Acute high-dose titanium dioxide nanoparticle exposure alters gastrointestinal homeostasis in mice.


Journal

Journal of applied toxicology : JAT
ISSN: 1099-1263
Titre abrégé: J Appl Toxicol
Pays: England
ID NLM: 8109495

Informations de publication

Date de publication:
10 2020
Historique:
received: 30 01 2020
revised: 10 03 2020
accepted: 04 04 2020
pubmed: 19 5 2020
medline: 3 11 2021
entrez: 19 5 2020
Statut: ppublish

Résumé

Human exposure to a wide variety of engineered nanoparticles (NPs) is on the rise and use in common food additives increases gastrointestinal (GI) exposure. Host health is intricately linked to the GI microbiome and immune response. Perturbations in the microbiota can affect energy harvest, trigger inflammation and alter the mucosal barrier leading to various disease states such as obesity and inflammatory bowel diseases. We hypothesized that single high-dose titanium dioxide (TiO

Identifiants

pubmed: 32420653
doi: 10.1002/jat.3991
doi:

Substances chimiques

Coloring Agents 0
Titanium D1JT611TNE

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1384-1395

Informations de copyright

© 2020 John Wiley & Sons, Ltd.

Références

Alard, J., Lehrter, V., Rhimi, M., Mangin, I., Peucelle, V., Abraham, A. L., … Grangette, C. (2016). Beneficial metabolic effects of selected probiotics on diet-induced obesity and insulin resistance in mice are associated with improvement of dysbiotic gut microbiota. Environmental Microbiology, 18(5), 1484-1497. https://doi.org/10.1111/1462-2920.13181
Angelakis, E. (2016). Weight gain by gut microbiota manipulation in productive animals. Microbial Pathogenesis, 106, 162-170. https://doi.org/10.1016/j.micpath.2016.11.002
Arrieta, M. C., & Finlay, B. B. (2012). The commensal microbiota drives immune homeostasis. Frontiers in Immunology, 3, 33. https://doi.org/10.3389/fimmu.2012.00033
Backhed, F., Ding, H., Wang, T., Hooper, L. V., Koh, G. Y., Nagy, … Gordon, J. I. (2004). The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United States of America, 101(44), 15718-15723. https://doi.org/10.1073/pnas.0407076101
Bamias, G., Martin, C., Mishina, M., Ross, W. G., Rivera-Nieves, J., Marini, M., & Cominelli, F. (2005). Proinflammatory effects of TH2 cytokines in a murine model of chronic small intestinal inflammation. Gastroenterology, 128(3), 654-666. https://doi.org/10.1053/j.gastro.2004.11.053
Barman, M., Unold, D., Shifley, K., Amir, E., Hung, K., Bos, N., & Salzman, N. (2008). Enteric salmonellosis disrupts the microbial ecology of the murine gastrointestinal tract. Infection and Immunity, 76(3), 907-915. https://doi.org/10.1128/IAI.01432-07
Bercik, P., Denou, E., Collins, J., Jackson, W., Lu, J., Jury, J., … Collins, S. M. (2011). The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology, 141(2), 599-609. https://doi.org/10.1053/j.gastro.2011.04.052
Birchenough, G. M., Nystrom, E. E., Johansson, M. E., & Hansson, G. C. (2016). A sentinel goblet cell guards the colonic crypt by triggering Nlrp6-dependent Muc2 secretion. Science, 352(6293), 1535-1542. https://doi.org/10.1126/science.aaf7419
Bruce-Keller, A. J., Salbaum, J. M., Luo, M., Blanchard, E., Taylor, C. M., Welsh, D. A., & Berthoud, H. R. (2015). Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biological Psychiatry, 77(7), 607-615. https://doi.org/10.1016/j.biopsych.2014.07.012
Cassidy, M. M., Lightfoot, F. G., & Vahouny, G. V. (1981). Structural-functional modulation of mucin secretory patterns in the gastrointestinal tract. Progress in Clinical and Biological Research, 73, 97-127. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7198795
Chassaing, B., Koren, O., Goodrich, J. K., Poole, A. C., Srinivasan, S., Ley, R. E., & Gewirtz, A. T. (2015). Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature, 519(7541), 92-96. https://doi.org/10.1038/nature14232
Chen, E. Y., Garnica, M., Wang, Y. C., Chen, C. S., & Chin, W. C. (2011). Mucin secretion induced by titanium dioxide nanoparticles. PLoS ONE, 6(1), e16198. https://doi.org/10.1371/journal.pone.0016198
Chen, L., Guo, Y., Hu, C., Lam, P. K. S., Lam, J. C. W., & Zhou, B. (2018). Dysbiosis of gut microbiota by chronic coexposure to titanium dioxide nanoparticles and bisphenol A: Implications for host health in zebrafish. Environmental Pollution, 234, 307-317. https://doi.org/10.1016/j.envpol.2017.11.074
Chen, Z., Wang, Y., Zhuo, L., Chen, S., Zhao, L., Chen, … Jia, G. (2015). Interaction of titanium dioxide nanoparticles with glucose on young rats after oral administration. Nanomedicine, 11(7), 1633-1642. https://doi.org/10.1016/j.nano.2015.06.002
Delgado-Buenrostro, N. L., Medina-Reyes, E. I., Lastres-Becker, I., Freyre-Fonseca, V., Ji, Z., Hernandez-Pando, R., … Chirino, Y. I. (2015). Nrf2 protects the lung against inflammation induced by titanium dioxide nanoparticles: A positive regulator role of Nrf2 on cytokine release. Environmental Toxicology, 30(7), 782-792. https://doi.org/10.1002/tox.21957
Derrien, M., van Baarlen, P., Hooiveld, G., Norin, E., Muller, M., & de Vos, W. M. (2011). Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphila. Frontiers in Microbiology, 2, 166. https://doi.org/10.3389/fmicb.2011.00166
Dinan, T. G., & Cryan, J. F. (2017). Gut-brain axis in 2016: Brain-gut-microbiota axis-mood, metabolism and behaviour. Nature Reviews. Gastroenterology & Hepatology, 14(2), 69-70. https://doi.org/10.1038/nrgastro.2016.200
Dorier, M., Beal, D., Tisseyre, C., Marie-Desvergne, C., Dubosson, M., Barreau, F., … Carriere, M. (2019). The food additive E171 and titanium dioxide nanoparticles indirectly alter the homeostasis of human intestinal epithelial cells in vitro. Environmental Science: Nano, 6(5), 1549-1561. https://doi.org/10.1039/c8en01188e
Drissi, F., Merhej, V., Angelakis, E., El, K. A., Carriere, F., Henrissat, B., & Raoult, D. (2014). Comparative genomics analysis of Lactobacillus species associated with weight gain or weight protection. Nutrition & Diabetes, 4, e109. https://doi.org/10.1038/nutd.2014.6
Dror, T., Dickstein, Y., Dubourg, G., & Paul, M. (2016). Microbiota manipulation for weight change. Microbial Pathogenesis, 106, 146-161. https://doi.org/10.1016/j.micpath.2016.01.002
Ericsson, A. C., Hagan, C. E., Davis, D. J., & Franklin, C. L. (2014). Segmented filamentous bacteria: commensal microbes with potential effects on research. Comparative Medicine, 64(2), 90-98. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/24674582
Faust, J. J., Doudrick, K., Yang, Y., Westerhoff, P., & Capco, D. G. (2014). Food grade titanium dioxide disrupts intestinal brush border microvilli in vitro independent of sedimentation. Cell Biology and Toxicology, 30(3), 169-188. https://doi.org/10.1007/s10565-014-9278-1
Galdeano, C. M., & Perdigon, G. (2006). The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clinical and Vaccine Immunology, 13(2), 219-226. https://doi.org/10.1128/CVI.13.2.219-226.2006
Gustafsson, A., Lindstedt, E., Elfsmark, L. S., & Bucht, A. (2011). Lung exposure of titanium dioxide nanoparticles induces innate immune activation and long-lasting lymphocyte response in the Dark Agouti rat. Journal of Immunotoxicology, 8(2), 111-121. https://doi.org/10.3109/1547691X.2010.546382
Harley, I. T., Giles, D. A., Pfluger, P. T., Burgess, S. L., Walters, S., Hembree, J., … Karp, C. L. (2013). Differential colonization with segmented filamentous bacteria and Lactobacillus murinus do not drive divergent development of diet-induced obesity in C57BL/6 mice. Molecular Metabolism, 2(3), 171-183. https://doi.org/10.1016/j.molmet.2013.04.004
Harley, I. T., Stankiewicz, T. E., Giles, D. A., Softic, S., Flick, L. M., Cappelletti, M., … Divanovic, S. (2014). IL-17 signaling accelerates the progression of nonalcoholic fatty liver disease in mice. Hepatology, 59(5), 1830-1839. https://doi.org/10.1002/hep.26746
Holmes, J. L., Van Itallie, C. M., Rasmussen, J. E., & Anderson, J. M. (2006). Claudin profiling in the mouse during postnatal intestinal development and along the gastrointestinal tract reveals complex expression patterns. Gene Expression Patterns, 6(6), 581-588. https://doi.org/10.1016/j.modgep.2005.12.001
Hong, F., Zhao, X., Si, W., Ze, Y., Wang, L., Zhou, … Zhang, J. (2015). Decreased spermatogenesis led to alterations of testis-specific gene expression in male mice following nano-TiO2 exposure. Journal of Hazardous Materials, 300, 718-728. https://doi.org/10.1016/j.jhazmat.2015.08.010
Hong, J., Wang, L., Zhao, X., Yu, X., Sheng, L., Xu, … Hong, F. (2014). Th2 factors may be involved in TiO2 NP-induced hepatic inflammation. Journal of Agricultural and Food Chemistry, 62(28), 6871-6878. https://doi.org/10.1021/jf501428w
Ivanov, I. I., Atarashi, K., Manel, N., Brodie, E. L., Shima, T., Karaoz, … Littman, D. R. (2009). Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell, 139(3), 485-498. https://doi.org/10.1016/j.cell.2009.09.033
Jovanovic, B. (2015). Critical review of public health regulations of titanium dioxide, a human food additive. Integrated Environmental Assessment and Management, 11(1), 10-20. https://doi.org/10.1002/ieam.1571
Kang, C. S., Ban, M., Choi, E. J., Moon, H. G., Jeon, J. S., Kim, D. K., … Kim, Y. K. (2013). Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis. PLoS ONE, 8(10), e76520. https://doi.org/10.1371/journal.pone.0076520
Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L., & Gordon, J. I. (2011). Human nutrition, the gut microbiome and the immune system. Nature, 474(7351), 327-336. https://doi.org/10.1038/nature10213
Keller, A. A., & Lazareva, A. (2014). Predicted releases of engineered nanomaterials: from global to regional to local. Environmental Science & Technology Letters, 1, 65-70.
Kim, G. O., Choi, Y. S., Bae, C. H., Song, S. Y., & Kim, Y. D. (2017). Effect of titanium dioxide nanoparticles (TiO2 NPs) on the expression of mucin genes in human airway epithelial cells. Inhalation Toxicology, 29(1), 1-9. https://doi.org/10.1080/08958378.2016.1267282
Kish, L., Hotte, N., Kaplan, G. G., Vincent, R., Tso, R., Ganzle, M., … Madsen, K. L. (2013). Environmental particulate matter induces murine intestinal inflammatory responses and alters the gut microbiome. PLoS ONE, 8(4), e62220. https://doi.org/10.1371/journal.pone.0062220
Koeneman, B. A., Zhang, Y., Westerhoff, P., Chen, Y., Crittenden, J. C., & Capco, D. G. (2010). Toxicity and cellular responses of intestinal cells exposed to titanium dioxide. Cell Biology and Toxicology, 26(3), 225-238. https://doi.org/10.1007/s10565-009-9132-z
Krüger, K., Cossais, F., Neve, H., & Klempt, M. (2014). Titanium dioxide nanoparticles activate IL8-related inflammatory pathways in human colonic epithelial Caco-2 cells. Journal of Nanoparticle Research, 16, 2402-2406. https://doi.org/10.1007/s11051-014-2402-6
Larsen, S. T., Roursgaard, M., Jensen, K. A., & Nielsen, G. D. (2010). Nano titanium dioxide particles promote allergic sensitization and lung inflammation in mice. Basic & Clinical Pharmacology & Toxicology, 106(2), 114-117. https://doi.org/10.1111/j.1742-7843.2009.00473.x
Le Chatelier, E., Nielsen, T., Qin, J., Prifti, E., Hildebrand, F., Falony, G., … Pedersen, O. (2013). Richness of human gut microbiome correlates with metabolic markers. Nature, 500(7464), 541-546. https://doi.org/10.1038/nature12506
Ley, R. E., Backhed, F., Turnbaugh, P., Lozupone, C. A., Knight, R. D., & Gordon, J. I. (2005). Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America, 102(31), 11070-11075. https://doi.org/10.1073/pnas.0504978102
Lomer, M. C., Thompson, R. P., & Powell, J. J. (2002). Fine and ultrafine particles of the diet: influence on the mucosal immune response and association with Crohn's disease. The Proceedings of the Nutrition Society, 61(1), 123-130. https://doi.org/10.1079/pns2001134
Ma, Y., Guo, Y., Ye, H., Huang, K., Lv, Z., & Ke, Y. (2019). Different effects of titanium dioxide nanoparticles instillation in young and adult mice on DNA methylation related with lung inflammation and fibrosis. Ecotoxicology and Environmental Safety, 176, 1-10. https://doi.org/10.1016/j.ecoenv.2019.03.055
Maslowski, K. M., Vieira, A. T., Ng, A., Kranich, J., Sierro, F., Yu, D., … Mackay, C. R. (2009). Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature, 461(7268), 1282-1286. https://doi.org/10.1038/nature08530
Mazmanian, S. K., Round, J. L., & Kasper, D. L. (2008). A microbial symbiosis factor prevents intestinal inflammatory disease. Nature, 453(7195), 620-625. https://doi.org/10.1038/nature07008
McCracken, C., Zane, A., Knight, D. A., Dutta, P. K., & Waldman, W. J. (2013). Minimal intestinal epithelial cell toxicity in response to short- and long-term food-relevant inorganic nanoparticle exposure. Chemical Research in Toxicology, 26(10), 1514-1525. https://doi.org/10.1021/tx400231u
Million, M., Angelakis, E., Paul, M., Armougom, F., Leibovici, L., & Raoult, D. (2012). Comparative meta-analysis of the effect of Lactobacillus species on weight gain in humans and animals. Microbial Pathogenesis, 53(2), 100-108. https://doi.org/10.1016/j.micpath.2012.05.007
Million, M., Maraninchi, M., Henry, M., Armougom, F., Richet, H., Carrieri, P., … Raoult, D. (2012). Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. International Journal of Obesity, 36(6), 817-825. https://doi.org/10.1038/ijo.2011.153
Mu, W., Wang, Y., Huang, C., Fu, Y., Li, J., Wang, H., … Ba, Q. (2019). Effect of long-term intake of dietary titanium dioxide nanoparticles on intestine inflammation in mice. Journal of Agricultural and Food Chemistry, 67(33), 9382-9389. https://doi.org/10.1021/acs.jafc.9b02391
Nogueira, C. M., de Azevedo, W. M., Dagli, M. L., Toma, S. H., Leite, A. Z., Lordello, M. L., … Sipahi, A. M. (2012). Titanium dioxide induced inflammation in the small intestine. World Journal of Gastroenterology, 18(34), 4729-4735. https://doi.org/10.3748/wjg.v18.i34.4729
Ohland, C. L., & Macnaughton, W. K. (2010). Probiotic bacteria and intestinal epithelial barrier function. American Journal of Physiology. Gastrointestinal and Liver Physiology, 298(6), G807-G819. https://doi.org/10.1152/ajpgi.00243.2009
Payne, A. N., Chassard, C., Zimmermann, M., Muller, P., Stinca, S., & Lacroix, C. (2011). The metabolic activity of gut microbiota in obese children is increased compared with normal-weight children and exhibits more exhaustive substrate utilization. Nutrition & Diabetes, 1, e12. https://doi.org/10.1038/nutd.2011.8
Powell, J. J., Harvey, R. S., Ashwood, P., Wolstencroft, R., Gershwin, M. E., & Thompson, R. P. (2000). Immune potentiation of ultrafine dietary particles in normal subjects and patients with inflammatory bowel disease. Journal of Autoimmunity, 14(1), 99-105. https://doi.org/10.1006/jaut.1999.0342
Radziwill-Bienkowska, J. M., Talbot, P., Kamphuis, J. B. J., Robert, V., Cartier, C., Fourquaux, I., … Mercier-Bonin, M. (2018). Toxicity of food-grade TiO2 to commensal intestinal and transient food-borne bacteria: New insights using nano-SIMS and Synchrotron UV fluorescence imaging. Frontiers in Microbiology, 9, 794. https://doi.org/10.3389/fmicb.2018.00794
Roediger, W. E. (1980). Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut, 21(9), 793-798. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7429343
Ruiz, P. A., Moron, B., Becker, H. M., Lang, S., Atrott, K., Spalinger, M. R., … Rogler, G. (2017). Titanium dioxide nanoparticles exacerbate DSS-induced colitis: role of the NLRP3 inflammasome. Gut, 66(7), 1216-1224. https://doi.org/10.1136/gutjnl-2015-310297
Salim, S. Y., Jovel, J., Wine, E., Kaplan, G. G., Vincent, R., Thiesen, A., … Madsen, K. L. (2014). Exposure to ingested airborne pollutant particulate matter increases mucosal exposure to bacteria and induces early onset of inflammation in neonatal IL-10-deficient mice. Inflammatory Bowel Diseases, 20(7), 1129-1138. https://doi.org/10.1097/MIB.0000000000000066
Sano, T., Huang, W., Hall, J. A., Yang, Y., Chen, A., Gavzy, S. J., … Littman, D. R. (2015). An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses. Cell, 163(2), 381-393. https://doi.org/10.1016/j.cell.2015.08.061
Schnupf, P., Gaboriau-Routhiau, V., Gros, M., Friedman, R., Moya-Nilges, M., Nigro, … Sansonetti, P. J. (2015). Growth and host interaction of mouse segmented filamentous bacteria in vitro. Nature, 520(7545), 99-103. https://doi.org/10.1038/nature14027
Smelt, M. J., de Haan, B. J., Bron, P. A., van Swam, I., Meijerink, M., Wells, J. M., … de Vos, P. (2012). L. plantarum, L. salivarius, and L. lactis attenuate Th2 responses and increase Treg frequencies in healthy mice in a strain dependent manner. PLoS ONE, 7(10), e47244. https://doi.org/10.1371/journal.pone.0047244
Song, Z. M., Chen, N., Liu, J. H., Tang, H., Deng, X., Xi, W. S., … Wang, H. (2015). Biological effect of food additive titanium dioxide nanoparticles on intestine: an in vitro study. Journal of Applied Toxicology, 35(10), 1169-1178. https://doi.org/10.1002/jat.3171
Upadhyay, V., Poroyko, V., Kim, T. J., Devkota, S., Fu, S., Liu, D., … Fu, Y. X. (2012). Lymphotoxin regulates commensal responses to enable diet-induced obesity. Nature Immunology, 13(10), 947-953. https://doi.org/10.1038/ni.2403
Van den Abbeele, P., Belzer, C., Goossens, M., Kleerebezem, M., de Vos, W. M., Thas, O., … Van de Wiele, T. (2013). Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model. The ISME Journal, 7(5), 949-961. https://doi.org/10.1038/ismej.2012.158
Vance, M. E., Kuiken, T., Vejerano, E. P., McGinnis, S. P., Hochella, M. F. Jr., Rejeski, D., & Hull, M. S. (2015). Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein Journal of Nanotechnology, 6, 1769-1780. https://doi.org/10.3762/bjnano.6.181
Wang, Y., Chen, Z., Ba, T., Pu, J., Chen, T., Song, Y., … Jia, G. (2013). Susceptibility of young and adult rats to the oral toxicity of titanium dioxide nanoparticles. Small, 9(9-10), 1742-1752. https://doi.org/10.1002/smll.201201185
Wang, Y., Devkota, S., Musch, M. W., Jabri, B., Nagler, C., Antonopoulos, D. A., … Chang, E. B. (2010). Regional mucosa-associated microbiota determine physiological expression of TLR2 and TLR4 in murine colon. PLoS ONE, 5(10), e13607. https://doi.org/10.1371/journal.pone.0013607
Warheit, D. B., Brown, S. C., & Donner, E. M. (2015). Acute and subchronic oral toxicity studies in rats with nanoscale and pigment grade titanium dioxide particles. Food and Chemical Toxicology, 84, 208-224. https://doi.org/10.1016/j.fct.2015.08.026
Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., & von Goetz, N. (2012). Titanium dioxide nanoparticles in food and personal care products. Environmental Science & Technology, 46(4), 2242-2250. https://doi.org/10.1021/es204168d
Wilding, L. A., Bassis, C. M., Walacavage, K., Hashway, S., Leroueil, P. R., Morishita, M., … Bergin, I. L. (2016). Repeated dose (28-day) administration of silver nanoparticles of varied size and coating does not significantly alter the indigenous murine gut microbiome. Nanotoxicology, 10(5), 513-520. https://doi.org/10.3109/17435390.2015.1078854
Williams, K., Milner, J., Boudreau, M. D., Gokulan, K., Cerniglia, C. E., & Khare, S. (2015). Effects of subchronic exposure of silver nanoparticles on intestinal microbiota and gut-associated immune responses in the ileum of Sprague-Dawley rats. Nanotoxicology, 9(3), 279-289. https://doi.org/10.3109/17435390.2014.921346
Wu, F., & Hicks, A. L. (2020). Estimating human exposure to titanium dioxide from personal care products through a social survey approach. Integrated Environmental Assessment and Management, 16(1), 10-16. https://doi.org/10.1002/ieam.4197

Auteurs

Courtney C Kurtz (CC)

Department of Biology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, US.

Samantha Mitchell (S)

Department of Biology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, US.

Kaitlyn Nielsen (K)

Department of Biology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, US.

Kevin D Crawford (KD)

Department of Chemistry, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, US.
Sustainability Institute for Regional Transformations, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, US.

Sabrina R Mueller-Spitz (SR)

Department of Biology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, US.
Sustainability Institute for Regional Transformations, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, US.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH