Nonradiative Energy Transfer between Thickness-Controlled Halide Perovskite Nanoplatelets.


Journal

ACS energy letters
ISSN: 2380-8195
Titre abrégé: ACS Energy Lett
Pays: United States
ID NLM: 101697523

Informations de publication

Date de publication:
08 May 2020
Historique:
received: 28 02 2020
accepted: 01 04 2020
entrez: 19 5 2020
pubmed: 19 5 2020
medline: 19 5 2020
Statut: ppublish

Résumé

Despite showing great promise for optoelectronics, the commercialization of halide perovskite nanostructure-based devices is hampered by inefficient electrical excitation and strong exciton binding energies. While transport of excitons in an energy-tailored system via Förster resonance energy transfer (FRET) could be an efficient alternative, halide ion migration makes the realization of cascaded structures difficult. Here, we show how these could be obtained by exploiting the pronounced quantum confinement effect in two-dimensional CsPbBr

Identifiants

pubmed: 32421025
doi: 10.1021/acsenergylett.0c00471
pmc: PMC7216487
doi:

Types de publication

Journal Article

Langues

eng

Pagination

1380-1385

Informations de copyright

Copyright © 2020 American Chemical Society.

Déclaration de conflit d'intérêts

The authors declare no competing financial interest.

Références

Angew Chem Int Ed Engl. 2016 Oct 24;55(44):13887-13892
pubmed: 27690323
Nat Mater. 2015 May;14(5):484-9
pubmed: 25774956
Chem Rev. 2019 Mar 13;119(5):3296-3348
pubmed: 30758194
Adv Mater. 2016 Nov;28(43):9478-9485
pubmed: 27620530
J Am Chem Soc. 2015 Jun 24;137(24):7843-50
pubmed: 26020457
J Phys Chem Lett. 2019 Sep 5;10(17):5193-5199
pubmed: 31434477
J Phys Chem C Nanomater Interfaces. 2017 Feb 23;121(7):3790-3796
pubmed: 28316756
Nano Lett. 2018 Aug 8;18(8):5231-5238
pubmed: 29990435
Nat Commun. 2018 Apr 23;9(1):1609
pubmed: 29686385
Chem Rev. 2016 Nov 9;116(21):12956-13008
pubmed: 27327168
Nano Lett. 2015 Jun 10;15(6):3692-6
pubmed: 25633588
Adv Mater. 2018 Feb;30(8):
pubmed: 29318670
J Phys Chem Lett. 2019 May 2;10(9):2135-2142
pubmed: 30978290
Nat Mater. 2018 May;17(5):394-405
pubmed: 29459748
Energy Environ Sci. 2016 Jun 8;9(6):1989-1997
pubmed: 27478500
Nanoscale. 2015 Feb 14;7(6):2545-51
pubmed: 25572445
ACS Nano. 2017 Oct 24;11(10):10373-10383
pubmed: 28910074
Nano Lett. 2015 Oct 14;15(10):6521-7
pubmed: 26327242
J Am Chem Soc. 2018 Nov 21;140(46):15675-15683
pubmed: 30371066
Nat Mater. 2015 Jun;14(6):636-42
pubmed: 25849532
Adv Mater. 2018 Jul 3;:e1800818
pubmed: 29971842
ACS Nano. 2016 Jan 26;10(1):1224-30
pubmed: 26617344
Nature. 2018 Oct;562(7726):245-248
pubmed: 30305741
Adv Mater. 2018 Feb;30(6):
pubmed: 29314326
Nat Mater. 2019 Aug;18(8):846-852
pubmed: 31263225
Nano Lett. 2019 Aug 14;19(8):4928-4933
pubmed: 31322894
Angew Chem Int Ed Engl. 2015 Dec 14;54(51):15424-8
pubmed: 26546495
Nat Nanotechnol. 2016 Oct;11(10):872-877
pubmed: 27347835

Auteurs

Andreas Singldinger (A)

Nanospectroscopy Group and Center for Nanoscience (CeNS), Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität München, Königinstr. 10, 80539 Munich, Germany.

Moritz Gramlich (M)

Nanospectroscopy Group and Center for Nanoscience (CeNS), Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität München, Königinstr. 10, 80539 Munich, Germany.

Christoph Gruber (C)

Nanospectroscopy Group and Center for Nanoscience (CeNS), Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität München, Königinstr. 10, 80539 Munich, Germany.

Carola Lampe (C)

Nanospectroscopy Group and Center for Nanoscience (CeNS), Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität München, Königinstr. 10, 80539 Munich, Germany.

Alexander S Urban (AS)

Nanospectroscopy Group and Center for Nanoscience (CeNS), Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität München, Königinstr. 10, 80539 Munich, Germany.

Classifications MeSH