Revealing

CO2 gas O2-induced reaction bypass ambient pressure XPS lithium metal anode oxalate intermediate surface reaction mechanism

Journal

ACS applied materials & interfaces
ISSN: 1944-8252
Titre abrégé: ACS Appl Mater Interfaces
Pays: United States
ID NLM: 101504991

Informations de publication

Date de publication:
10 Jun 2020
Historique:
pubmed: 20 5 2020
medline: 20 5 2020
entrez: 20 5 2020
Statut: ppublish

Résumé

Because they deliver outstanding energy density, next-generation lithium metal batteries (LMBs) are essential to the advancement of both electric mobility and portable electronic devices. However, the high reactivity of metallic lithium surfaces leads to the low electrochemical performance of many secondary batteries. Besides, Li deposition is not uniform, which has been attributed to the low ionic conductivity of the anode surface. In particular, lithium exposure to CO

Identifiants

pubmed: 32423200
doi: 10.1021/acsami.0c04282
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

26607-26613

Auteurs

Ane Etxebarria (A)

Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain.
Departamento de Física de la Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, P.O. Box 644, 48080 Bilbao, Spain.

Dong-Jin Yun (DJ)

Analytical Engineering Group, Samsung Advanced Institute of Technology, Suwon 440-600, South Korea.
Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States.

Monika Blum (M)

Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States.
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Yifan Ye (Y)

Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States.
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Meiling Sun (M)

Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States.

Kyung-Jae Lee (KJ)

Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States.
Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, South Korea.

Hongyang Su (H)

Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States.
Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.

Miguel Ángel Muñoz-Márquez (MÁ)

Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain.

Philip N Ross (PN)

Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Ethan J Crumlin (EJ)

Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States.
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Classifications MeSH