Integrated multi-omics approaches to improve classification of chronic kidney disease.
Journal
Nature reviews. Nephrology
ISSN: 1759-507X
Titre abrégé: Nat Rev Nephrol
Pays: England
ID NLM: 101500081
Informations de publication
Date de publication:
11 2020
11 2020
Historique:
accepted:
07
04
2020
pubmed:
20
5
2020
medline:
2
1
2021
entrez:
20
5
2020
Statut:
ppublish
Résumé
Chronic kidney diseases (CKDs) are currently classified according to their clinical features, associated comorbidities and pattern of injury on biopsy. Even within a given classification, considerable variation exists in disease presentation, progression and response to therapy, highlighting heterogeneity in the underlying biological mechanisms. As a result, patients and clinicians experience uncertainty when considering optimal treatment approaches and risk projection. Technological advances now enable large-scale datasets, including DNA and RNA sequence data, proteomics and metabolomics data, to be captured from individuals and groups of patients along the genotype-phenotype continuum of CKD. The ability to combine these high-dimensional datasets, in which the number of variables exceeds the number of clinical outcome observations, using computational approaches such as machine learning, provides an opportunity to re-classify patients into molecularly defined subgroups that better reflect underlying disease mechanisms. Patients with CKD are uniquely poised to benefit from these integrative, multi-omics approaches since the kidney biopsy, blood and urine samples used to generate these different types of molecular data are frequently obtained during routine clinical care. The ultimate goal of developing an integrated molecular classification is to improve diagnostic classification, risk stratification and assignment of molecular, disease-specific therapies to improve the care of patients with CKD.
Identifiants
pubmed: 32424281
doi: 10.1038/s41581-020-0286-5
pii: 10.1038/s41581-020-0286-5
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
657-668Subventions
Organisme : NIDDK NIH HHS
ID : P30 DK081943
Pays : United States
Références
Baigent, C. et al. Challenges in conducting clinical trials in nephrology: conclusions from a Kidney Disease-Improving Global Outcomes (KDIGO) controversies conference. Kidney Int. 92, 297–305 (2017).
pubmed: 28709600
pmcid: 6326036
doi: 10.1016/j.kint.2017.04.019
Inker, L. A. et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am. J. Kidney Dis. 63, 713–735 (2014).
pubmed: 24647050
doi: 10.1053/j.ajkd.2014.01.416
Isakova, T. et al. KDOQI US commentary on the 2017 KDIGO clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease–mineral and bone disorder (CKD-MBD). Am. J. Kidney Dis. 70, 737–751 (2017).
pubmed: 28941764
doi: 10.1053/j.ajkd.2017.07.019
Lamb, E. J., Levey, A. S. & Stevens, P. E. The kidney disease improving global outcomes (KDIGO) guideline update for chronic kidney disease: evolution not revolution. Clin. Chem. 59, 462–465 (2020).
doi: 10.1373/clinchem.2012.184259
Levey, A. S., Becker, C. & Inker, L. A. Glomerular filtration rate and albuminuria for detection and staging of acute and chronic kidney disease in adults: a systematic review. JAMA 313, 837–846 (2015).
pubmed: 25710660
pmcid: 4410363
doi: 10.1001/jama.2015.0602
Lombel, R. M., Gipson, D. S. & Hodson, E. M. Kidney Disease: Improving Global Outcomes. Treatment of steroid-sensitive nephrotic syndrome: new guidelines from KDIGO. Pediatr. Nephrol. 28, 415–426 (2013).
pubmed: 23052651
doi: 10.1007/s00467-012-2310-x
Lombel, R. M., Hodson, E. M. & Gipson, D. S. Kidney Disease: Improving Global Outcomes. Treatment of steroid-resistant nephrotic syndrome in children: new guidelines from KDIGO. Pediatr. Nephrol. 28, 409–414 (2013).
pubmed: 23052648
doi: 10.1007/s00467-012-2304-8
Inrig, J. K. et al. The landscape of clinical trials in nephrology: a systematic review of Clinicaltrials.gov. Am. J. Kidney Dis. 63, 771–780 (2014).
pubmed: 24315119
doi: 10.1053/j.ajkd.2013.10.043
Haring, R. & Wallaschofski, H. Diving through the “-omics”: the case for deep phenotyping and systems epidemiology. OMICS 16, 231–234 (2012).
pubmed: 22320900
pmcid: 3339382
doi: 10.1089/omi.2011.0108
Gadegbeku, C. A. et al. Design of the nephrotic syndrome study network (NEPTUNE) to evaluate primary glomerular nephropathy by a multidisciplinary approach. Kidney Int. 83, 749–756 (2013).
pubmed: 23325076
pmcid: 3612359
doi: 10.1038/ki.2012.428
Nair, V. et al. A molecular morphometric approach to diabetic kidney disease can link structure to function and outcome. Kidney Int. 93, 439–449 (2018).
pubmed: 29054530
doi: 10.1016/j.kint.2017.08.013
Townsend, R. R. et al. Rationale and design of the transformative research in diabetic nephropathy (TRIDENT) study. Kidney Int. 97, 10–13 (2020).
pubmed: 31901339
doi: 10.1016/j.kint.2019.09.020
pmcid: 31901339
Groopman, E. E. et al. Diagnostic utility of exome sequencing for kidney disease. N. Engl. J. Med. 380, 142–151 (2019).
pubmed: 30586318
doi: 10.1056/NEJMoa1806891
Wuttke, M. et al. A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nat. Genet. 51, 957–972 (2019).
pubmed: 31152163
pmcid: 31152163
doi: 10.1038/s41588-019-0407-x
Hellwege, J. N. et al. Mapping eGFR loci to the renal transcriptome and phenome in the VA Million Veteran Program. Nat. Commun. 10, 3842 (2019).
pubmed: 31451708
pmcid: 6710266
doi: 10.1038/s41467-019-11704-w
Chu, A. Y. et al. Epigenome-wide association studies identify DNA methylation associated with kidney function. Nat. Commun. 8, 1286 (2017).
pubmed: 29097680
pmcid: 5668367
doi: 10.1038/s41467-017-01297-7
Coit, P. et al. Renal involvement in lupus is characterized by unique DNA methylation changes in naïve CD4+ T cells. J. Autoimmun. 61, 29–35 (2015).
pubmed: 26005050
pmcid: 4497927
doi: 10.1016/j.jaut.2015.05.003
Cohen, C. D., Frach, K., Schlondorff, D. & Kretzler, M. Quantitative gene expression analysis in renal biopsies: a novel protocol for a high-throughput multicenter application. Kidney Int. 61, 133–140 (2002).
pubmed: 11786093
doi: 10.1046/j.1523-1755.2002.00113.x
Lee, J. W., Chou, C.-L. & Knepper, M. A. Deep sequencing in microdissected renal tubules identifies nephron segment-specific transcriptomes. J. Am. Soc. Nephrol. 26, 2669–2677 (2015).
pubmed: 25817355
pmcid: 4625681
doi: 10.1681/ASN.2014111067
Wang, X., Park, J., Susztak, K., Zhang, N. R. & Li, M. Bulk tissue cell type deconvolution with multi-subject single-cell expression reference. Nat. Commun. 10, 380 (2019).
pubmed: 30670690
pmcid: 6342984
doi: 10.1038/s41467-018-08023-x
Park, J. et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 360, 758–763 (2018).
pubmed: 29622724
pmcid: 29622724
doi: 10.1126/science.aar2131
Czerniecki, S. M. et al. High-throughput screening enhances kidney organoid differentiation from human pluripotent stem cells and enables automated multidimensional phenotyping. Cell Stem Cell 22, 929–940 (2018).
pubmed: 29779890
pmcid: 5984728
doi: 10.1016/j.stem.2018.04.022
Rinschen, M. M., Limbutara, K., Knepper, M. A., Payne, D. M. & Pisitkun, T. From molecules to mechanisms: functional proteomics and its application to renal tubule physiology. Physiol. Rev. 98, 2571–2606 (2018).
pubmed: 30182799
pmcid: 6335097
doi: 10.1152/physrev.00057.2017
Kalim, S. & Rhee, E. P. Metabolomics and kidney precision medicine. Clin. J. Am. Soc. Nephrol. 12, 1726–1727 (2017).
pubmed: 28971981
pmcid: 5672979
doi: 10.2215/CJN.09480817
Saez-Rodriguez, J., Rinschen, M. M., Floege, J. & Kramann, R. Big science and big data in nephrology. Kidney Int. 95, 1326–1337 (2019).
pubmed: 30982672
doi: 10.1016/j.kint.2018.11.048
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).
Ko, Y. A. et al. Genetic-variation-driven gene-expression changes highlight genes with important functions for kidney disease. Am. J. Hum. Genet. 100, 940–953 (2017).
pubmed: 28575649
pmcid: 5473735
doi: 10.1016/j.ajhg.2017.05.004
Gillies, C. E. et al. An eQTL landscape of kidney tissue in human nephrotic syndrome. Am. J. Hum. Genet. 103, 232–244 (2018).
pubmed: 30057032
pmcid: 6081280
doi: 10.1016/j.ajhg.2018.07.004
Qiu, C. et al. Renal compartment–specific genetic variation analyses identify new pathways in chronic kidney disease. Nat. Med. 24, 1721–1731 (2018).
pubmed: 30275566
pmcid: 6301011
doi: 10.1038/s41591-018-0194-4
Martini, S. et al. Integrative biology identifies shared transcriptional networks in CKD. J. Am. Soc. Nephrol. 25, 2559–2572 (2014).
pubmed: 24925724
pmcid: 4214523
doi: 10.1681/ASN.2013080906
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03550443 (2019).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03749447 (2019).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03019185 (2019).
Tuttle, K. R. et al. JAK1/JAK2 inhibition by baricitinib in diabetic kidney disease: results from a phase 2 randomized controlled clinical trial. Nephrol. Dialysis Transplant. 33, 1950–1959 (2018).
doi: 10.1093/ndt/gfx377
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00098020 (2017).
Hodgin, J. B. et al. Identification of cross-species shared transcriptional networks of diabetic nephropathy in human and mouse glomeruli. Diabetes 62, 299–308 (2013).
pubmed: 23139354
doi: 10.2337/db11-1667
pmcid: 23139354
Berthier, C. C. et al. Enhanced expression of Janus kinase-signal transducer and activator of transcription pathway members in human diabetic nephropathy. Diabetes 58, 469–477 (2009).
pubmed: 19017763
pmcid: 2628622
doi: 10.2337/db08-1328
Zhang, H. et al. Podocyte-specific JAK2 overexpression worsens diabetic kidney disease in mice. Kidney Int. 92, 909–921 (2017).
pubmed: 28554737
pmcid: 5610635
doi: 10.1016/j.kint.2017.03.027
Tao, J. L. et al. JAK-STAT signaling is activated in the kidney and peripheral blood cells of patients with focal segmental glomerulosclerosis. Kidney Int. 94, 795–808 (2018).
pubmed: 30093081
pmcid: 6744284
doi: 10.1016/j.kint.2018.05.022
Hewitson, T. D. Renal tubulointerstitial fibrosis: common but never simple. Am. J. Physiol.-Renal Physiol. 296, F1239–F1244 (2009).
pubmed: 19144691
doi: 10.1152/ajprenal.90521.2008
Farris, A. B. & Colvin, R. B. Renal interstitial fibrosis: mechanisms and evaluation. Curr. Opin. Nephrol. Hypertens. 21, 289–300 (2012).
pubmed: 22449945
pmcid: 3354760
doi: 10.1097/MNH.0b013e3283521cfa
Kang, H. M. et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat. Med. 21, 37 (2014).
pubmed: 25419705
pmcid: 4444078
doi: 10.1038/nm.3762
Schroppel, B., Huber, S., Horster, M., Schlondorff, D. & Kretzler, M. Analysis of mouse glomerular podocyte mRNA by single-cell reverse transcription-polymerase chain reaction. Kidney Int. 53, 119–124 (1998).
pubmed: 9453007
doi: 10.1046/j.1523-1755.1998.00742.x
Ju, W. et al. Defining cell-type specificity at the transcriptional level in human disease. Genome Res. 23, 1862–1873 (2013).
pubmed: 23950145
pmcid: 3814886
doi: 10.1101/gr.155697.113
Potter, S. S. Single-cell RNA sequencing for the study of development, physiology and disease. Nat. Rev. Nephrol. 14, 479–492 (2018).
pubmed: 29789704
pmcid: 6070143
doi: 10.1038/s41581-018-0021-7
Menon, R. et al. Single cell transcriptomics identifies focal segmental glomerulosclerosis remission endothelial biomarker. JCI Insight 5, e133267 (2020).
pmcid: 7213795
doi: 10.1172/jci.insight.133267
Wilson, P. C. et al. The single-cell transcriptomic landscape of early human diabetic nephropathy. Proc. Natl Acad. Sci. USA 116, 19619–19625 (2019).
pubmed: 31506348
doi: 10.1073/pnas.1908706116
Arazi, A. et al. The immune cell landscape in kidneys of patients with lupus nephritis. Nat. Immunol. 20, 902–914 (2019).
pubmed: 31209404
pmcid: 6726437
doi: 10.1038/s41590-019-0398-x
Narain, S. & Furie, R. Update on clinical trials in systemic lupus erythematosus. Curr. Opin. Rheumatol. 28, 477–487 (2016).
pubmed: 27314466
doi: 10.1097/BOR.0000000000000311
Thanou, A. & Merrill, J. T. Treatment of systemic lupus erythematosus: new therapeutic avenues and blind alleys. Nat. Rev. Rheumatol. 10, 23–34 (2014).
pubmed: 24100460
doi: 10.1038/nrrheum.2013.145
Pennisi, E. Development cell by cell. Science 362, 1344–1345 (2018).
pubmed: 30573610
doi: 10.1126/science.362.6421.1344
Nishinakamura, R. Human kidney organoids: progress and remaining challenges. Nat. Rev. Nephrol. 15, 613–624 (2019).
doi: 10.1038/s41581-019-0176-x
Little, M. H. & Combes, A. N. Kidney organoids: accurate models or fortunate accidents. Genes. Dev. 33, 1319–1345 (2019).
pubmed: 31575677
pmcid: 6771389
doi: 10.1101/gad.329573.119
Harder, J. L. et al. Organoid single cell profiling identifies a transcriptional signature of glomerular disease. JCI Insight 4, pii: 122697 (2019).
doi: 10.1172/jci.insight.122697
Lemos, D. R. et al. Interleukin-1beta activates a MYC-dependent metabolic switch in kidney stromal cells necessary for progressive tubulointerstitial fibrosis. J. Am. Soc. Nephrol. 29, 1690–1705 (2018).
pubmed: 29739813
pmcid: 6054344
doi: 10.1681/ASN.2017121283
Beckerman, P. & Susztak, K. APOL1: the balance imposed by infection, selection, and kidney disease. Trends Mol. Med. 24, 682–695 (2018).
pubmed: 29886044
pmcid: 6101980
doi: 10.1016/j.molmed.2018.05.008
Schmidt-Ott, K. M. How to grow a kidney: patient-specific kidney organoids come of age. Nephrol. Dial. Transpl. 32, 17–23 (2016).
Hale, L. J. et al. 3D organoid-derived human glomeruli for personalised podocyte disease modelling and drug screening. Nat. Commun. 9, 5167 (2018).
pubmed: 30514835
pmcid: 6279764
doi: 10.1038/s41467-018-07594-z
Borestrom, C. et al. A CRISP(e)R view on kidney organoids allows generation of an induced pluripotent stem cell-derived kidney model for drug discovery. Kidney Int. 94, 1099–1110 (2018).
pubmed: 30072040
doi: 10.1016/j.kint.2018.05.003
Soo, J. Y. C., Jansen, J., Masereeuw, R. & Little, M. H. Advances in predictive in vitro models of drug-induced nephrotoxicity. Nat. Rev. Nephrol. 14, 378–393 (2018).
pubmed: 29626199
pmcid: 6013592
doi: 10.1038/s41581-018-0003-9
KDIGO. KDIGO Guidelines. CKD Evaluation and Management https://kdigo.org/guidelines/ckd-evaluation-and-management/ (2012).
KDIGO. KDIGO Guidelines. Glomerulonephritis https://kdigo.org/guidelines/gn/ (2012).
Himmelfarb, J. Kidney precision medicine project: hope for the future. ASN Kidney N. 11(March), 16 https://www.asn-online.org/publications/kidneynews/archives/2019/KN_2019_03_mar.pdf (2019).
Mariani, L. Perspectives from a junior investigator in the kidney precision medicine project. ASN Kidney N. 11(March), 16–17, https://www.asn-online.org/publications/kidneynews/archives/2019/KN_2019_03_mar.pdf (2019).
Amezquita, R. A. et al. Orchestrating single-cell analysis with bioconductor. Nat. Methods 17, 137–145 (2020).
pubmed: 31792435
doi: 10.1038/s41592-019-0654-x
Glassock, R. J. & Winearls, C. Screening for CKD with eGFR: doubts and dangers. Clin. J. Am. Soc. Nephrol. 3, 1563–1568 (2008).
pubmed: 18667744
pmcid: 4571145
doi: 10.2215/CJN.00960208
Ju, W. et al. Tissue transcriptome-driven identification of epidermal growth factor as a chronic kidney disease biomarker. Sci. Transl. Med. 7, 316ra193 (2015).
pubmed: 26631632
pmcid: 4861144
doi: 10.1126/scitranslmed.aac7071
Satirapoj, B., Pooluea, P., Nata, N. & Supasyndh, O. Urinary biomarkers of tubular injury to predict renal progression and end stage renal disease in type 2 diabetes mellitus with advanced nephropathy: a prospective cohort study. J. Diabetes Complicat. 33, 675–681 (2019).
doi: 10.1016/j.jdiacomp.2019.05.013
Pontillo, C. & Mischak, H. Urinary peptide-based classifier CKD273: towards clinical application in chronic kidney disease. Clin. Kidney J. 10, 192–201 (2017).
pubmed: 28694965
pmcid: 5499684
doi: 10.1093/ckj/sfx002
Siwy, J., Klein, T., Rosler, M. & von Eynatten, M. Urinary proteomics as a tool to identify kidney responders to dipeptidyl peptidase-4 inhibition: a hypothesis-generating analysis from the MARLINA-T2D Trial. Proteom. Clin. Appl. 13, 1800144 (2019).
doi: 10.1002/prca.201800144
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04009668 (2019).
Mariani, L. H. et al. Interstitial fibrosis scored on whole-slide digital imaging of kidney biopsies is a predictor of outcome in proteinuric glomerulopathies. Nephrol. Dial. Transpl. 33, 310–318 (2018).
doi: 10.1093/ndt/gfw443
Wu, L. et al. Urinary epidermal growth factor predicts renal prognosis in antineutrophil cytoplasmic antibody-associated vasculitis. Ann. Rheum. Dis. 77, 1339–1344 (2018).
pubmed: 29724728
doi: 10.1136/annrheumdis-2017-212578
Li, B. et al. Urinary epidermal growth factor as a prognostic marker for the progression of Alport syndrome in children. Pediatr. Nephrol. 33, 1731–1739 (2018).
pubmed: 29948307
pmcid: 6132884
doi: 10.1007/s00467-018-3988-1
Azukaitis, K. et al. Low levels of urinary epidermal growth factor predict chronic kidney disease progression in children. Kidney Int. 96, 214–221 (2019).
pubmed: 31005273
doi: 10.1016/j.kint.2019.01.035
Yepes-Calderón, M. et al. Urinary epidermal growth factor/creatinine ratio and graft failure in renal transplant recipients: a prospective cohort study. J. Clin. Med. 8, 1673 (2019).
pmcid: 6832301
doi: 10.3390/jcm8101673
pubmed: 6832301
Boustany, R. N., Kaye, E. & Alroy, J. Ultrastructural findings in skin from patients with Niemann-Pick disease, type C. Pediatr. Neurol. 6, 177–183 (1990).
pubmed: 2360958
doi: 10.1016/0887-8994(90)90059-A
Argilés, À. et al. CKD273, a new proteomics classifier assessing CKD and its prognosis. PLoS One 8, e62837 (2013).
pubmed: 23690958
pmcid: 3653906
doi: 10.1371/journal.pone.0062837
Critselis, E. & Lambers Heerspink, H. Utility of the CKD273 peptide classifier in predicting chronic kidney disease progression. Nephrol. Dial. Transpl. 31, 249–254 (2015).
Pontillo, C. et al. Prediction of chronic kidney disease stage 3 by CKD273, a urinary proteomic biomarker. Kidney Int. Rep. 2, 1066–1075 (2017).
pubmed: 29130072
pmcid: 5669285
doi: 10.1016/j.ekir.2017.06.004
Humphreys, B. D. Mechanisms of renal fibrosis. Annu. Rev. Physiol. 80, 309–326 (2018).
pubmed: 29068765
doi: 10.1146/annurev-physiol-022516-034227
Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).
pubmed: 19114008
pmcid: 19114008
doi: 10.1186/1471-2105-9-559
Lee, E., Chuang, H.-Y., Kim, J.-W., Ideker, T. & Lee, D. Inferring pathway activity toward precise disease classification. PLoS Comput. Biol. 4, e1000217 (2008).
pubmed: 18989396
pmcid: 2563693
doi: 10.1371/journal.pcbi.1000217
Subramanian, A. et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 171, 1437–1452 (2017).
pubmed: 29195078
pmcid: 29195078
doi: 10.1016/j.cell.2017.10.049
Lamb, J. et al. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006).
pubmed: 17008526
doi: 10.1126/science.1132939
Grayson, P. C. et al. Metabolic pathways and immunometabolism in rare kidney diseases. Ann. Rheum. Dis. 77, 1226–1233 (2018).
pubmed: 29724730
pmcid: 6045442
Taroni, J. N. et al. MultiPLIER: a transfer learning framework for transcriptomics reveals systemic features of rare disease. Cell Syst. 8, 380–394 e384 (2019).
pubmed: 6538307
pmcid: 6538307
doi: 10.1016/j.cels.2019.04.003
Mao, W., Zaslavsky, E., Hartmann, B. M., Sealfon, S. C. & Chikina, M. Pathway-level information extractor (PLIER) for gene expression data. Nat. Methods 16, 607–610 (2019).
pubmed: 31249421
pmcid: 7262669
doi: 10.1038/s41592-019-0456-1
Thomas, P. D. in The Gene Ontology Handbook (eds Christophe Dessimoz & Nives Škunca) 15–24 (Springer, 2017).
Lewis, S. E. in The Gene Ontology Handbook (eds Christophe Dessimoz & Nives Škunca) 291–302 (Springer, 2017).
The Gene Ontology Consortium. Expansion of the gene ontology knowledgebase and resources. Nucleic Acids Res. 45, D331–D338 (2016).
pmcid: 5210579
doi: 10.1093/nar/gkw1108
The Gene Ontology Consortium. The gene ontology resource: 20 years and still going strong. Nucleic Acids Res. 47, D330–D338 (2018).
pmcid: 6323945
doi: 10.1093/nar/gky1055
pubmed: 6323945
Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).
pubmed: 3037419
pmcid: 3037419
doi: 10.1038/75556
Ma, J. et al. Differential network enrichment analysis reveals novel lipid pathways in chronic kidney disease. Bioinformatics 35, 3441–3452 (2019).
pubmed: 30887029
pmcid: 6748777
doi: 10.1093/bioinformatics/btz114
Afshinnia, F. et al. Impaired beta-oxidation and altered complex lipid fatty acid partitioning with advancing CKD. J. Am. Soc. Nephrol. 29, 295–306 (2018).
pubmed: 29021384
doi: 10.1681/ASN.2017030350
Afshinnia, F. et al. Lipidomic signature of progression of chronic kidney disease in the chronic renal insufficiency cohort. Kidney Int. Rep. 1, 256–268 (2016).
pubmed: 28451650
pmcid: 5402253
doi: 10.1016/j.ekir.2016.08.007
Sealfon, R. S. G., Mariani, L. H., Kretzler, M. & Troyanskaya, O. G. Machine learning, the kidney, and genotype-phenotype analysis. Kidney Int. 14, 162 (2020).
Martini, S., Eichinger, F., Nair, V. & Kretzler, M. Defining human diabetic nephropathy on the molecular level: integration of transcriptomic profiles with biological knowledge. Rev. Endocr. Metab. Disord. 9, 267–274 (2008).
pubmed: 18704688
pmcid: 2597685
doi: 10.1007/s11154-008-9103-3
Wu, H. et al. Single-cell transcriptomics of a human kidney allograft biopsy specimen defines a diverse inflammatory response. J. Am. Soc. Nephrol. 29, 2069–2080 (2018).
pubmed: 29980650
pmcid: 6065085
doi: 10.1681/ASN.2018020125
Greene, C. S. et al. Understanding multicellular function and disease with human tissue-specific networks. Nat. Genet. 47, 569–576 (2015).
pubmed: 25915600
pmcid: 4828725
doi: 10.1038/ng.3259
Krishnan, A. et al. Genome-wide prediction and functional characterization of the genetic basis of autism spectrum disorder. Nat. Neurosci. 19, 1454–1462 (2016).
pubmed: 27479844
pmcid: 5803797
doi: 10.1038/nn.4353
Zhou, J. et al. Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk. Nat. Genet. 50, 1171–1179 (2018).
pubmed: 30013180
pmcid: 6094955
doi: 10.1038/s41588-018-0160-6
McMahon, A. P. et al. GUDMAP: the genitourinary developmental molecular anatomy project. J. Am. Soc. Nephrol. 19, 667–671 (2008).
pubmed: 18287559
doi: 10.1681/ASN.2007101078
Harding, S. D. et al. The GUDMAP database — an online resource for genitourinary research. Development 138, 2845–2853 (2011).
pubmed: 21652655
pmcid: 3188593
doi: 10.1242/dev.063594
Oxburgh, L. et al. (Re)building a kidney. J. Am. Soc. Nephrol. 28, 1370–1378 (2017).
pubmed: 28096308
pmcid: 5407737
doi: 10.1681/ASN.2016101077
Athey, B. D., Braxenthaler, M., Haas, M. & Guo, Y. tranSMART: an open source and community-driven informatics and data sharing platform for clinical and translational research. AMIA Jt. Summits Transl. Sci. Proc. 2013, 6–8 (2013).
pubmed: 24303286
pmcid: 3814495
Connor, E. Translating expertise: the Librarian’s role in translational research. JMLA 106, 137–137 (2018).
doi: 10.5195/JMLA.2018.349
Dankar, F. K., Ptitsyn, A. & Dankar, S. K. The development of large-scale de-identified biomedical databases in the age of genomics-principles and challenges. Hum. Genomics 12, 19 (2018).
pubmed: 29636096
pmcid: 5894154
doi: 10.1186/s40246-018-0147-5
Salerno, J., Knoppers, B. M., Lee, L. M., Hlaing, W. M. & Goodman, K. W. Ethics, big data and computing in epidemiology and public health. Ann. Epidemiol. 27, 297–301 (2017).
pubmed: 28595734
doi: 10.1016/j.annepidem.2017.05.002
Zarate, O. A. et al. Balancing benefits and risks of immortal data. Hastings Cent. Rep. 46, 36–45 (2016).
pubmed: 26678513
doi: 10.1002/hast.523
Gymrek, M., McGuire, A. L., Golan, D., Halperin, E. & Erlich, Y. Identifying personal genomes by surname inference. Science 339, 321–324 (2013).
pubmed: 23329047
doi: 10.1126/science.1229566
Chico, V. The impact of the general data protection regulation on health research. Br. Med. Bull. 128, 109–118 (2018).
pubmed: 30445448
doi: 10.1093/bmb/ldy038
Sarkar, H., Srivastava, A. & Patro, R. Minnow: a principled framework for rapid simulation of dscRNA-seq data at the read level. Bioinformatics 35, i136–i144 (2019).
pubmed: 31510649
pmcid: 6612833
doi: 10.1093/bioinformatics/btz351
Chung, R.-H. & Kang, C.-Y. A multi-omics data simulator for complex disease studies and its application to evaluate multi-omics data analysis methods for disease classification. GigaScience 8, giz045 (2019).
pubmed: 31029063
pmcid: 6486474
doi: 10.1093/gigascience/giz045
Wang, B. et al. Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods 11, 333–337 (2014).
pubmed: 24464287
doi: 10.1038/nmeth.2810
Argelaguet, R. et al. Multi-omics factor analysis — a framework for unsupervised integration of multi-omics data sets. Mol. Syst. Biol. 14, e8124 (2018).
pubmed: 6010767
pmcid: 6010767
doi: 10.15252/msb.20178124
Pedigo, C. E. et al. Local TNF causes NFATc1-dependent cholesterol-mediated podocyte injury. J. Clin. Invest. 126, 3336–3350 (2016).
pubmed: 27482889
pmcid: 5004940
doi: 10.1172/JCI85939
Mitrofanova, A. et al. Hydroxypropyl-beta-cyclodextrin protects from kidney disease in experimental Alport syndrome and focal segmental glomerulosclerosis. Kidney Int. 94, 1151–1159 (2018).
pubmed: 30301568
pmcid: 6278936
doi: 10.1016/j.kint.2018.06.031
Keenan, A. B. et al. The library of integrated network-based cellular signatures NIH program: system-level cataloging of human cells response to perturbations. Cell Syst. 6, 13–24 (2018).
pubmed: 29199020
doi: 10.1016/j.cels.2017.11.001