Integrated multi-omics approaches to improve classification of chronic kidney disease.


Journal

Nature reviews. Nephrology
ISSN: 1759-507X
Titre abrégé: Nat Rev Nephrol
Pays: England
ID NLM: 101500081

Informations de publication

Date de publication:
11 2020
Historique:
accepted: 07 04 2020
pubmed: 20 5 2020
medline: 2 1 2021
entrez: 20 5 2020
Statut: ppublish

Résumé

Chronic kidney diseases (CKDs) are currently classified according to their clinical features, associated comorbidities and pattern of injury on biopsy. Even within a given classification, considerable variation exists in disease presentation, progression and response to therapy, highlighting heterogeneity in the underlying biological mechanisms. As a result, patients and clinicians experience uncertainty when considering optimal treatment approaches and risk projection. Technological advances now enable large-scale datasets, including DNA and RNA sequence data, proteomics and metabolomics data, to be captured from individuals and groups of patients along the genotype-phenotype continuum of CKD. The ability to combine these high-dimensional datasets, in which the number of variables exceeds the number of clinical outcome observations, using computational approaches such as machine learning, provides an opportunity to re-classify patients into molecularly defined subgroups that better reflect underlying disease mechanisms. Patients with CKD are uniquely poised to benefit from these integrative, multi-omics approaches since the kidney biopsy, blood and urine samples used to generate these different types of molecular data are frequently obtained during routine clinical care. The ultimate goal of developing an integrated molecular classification is to improve diagnostic classification, risk stratification and assignment of molecular, disease-specific therapies to improve the care of patients with CKD.

Identifiants

pubmed: 32424281
doi: 10.1038/s41581-020-0286-5
pii: 10.1038/s41581-020-0286-5
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

657-668

Subventions

Organisme : NIDDK NIH HHS
ID : P30 DK081943
Pays : United States

Références

Baigent, C. et al. Challenges in conducting clinical trials in nephrology: conclusions from a Kidney Disease-Improving Global Outcomes (KDIGO) controversies conference. Kidney Int. 92, 297–305 (2017).
pubmed: 28709600 pmcid: 6326036 doi: 10.1016/j.kint.2017.04.019
Inker, L. A. et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am. J. Kidney Dis. 63, 713–735 (2014).
pubmed: 24647050 doi: 10.1053/j.ajkd.2014.01.416
Isakova, T. et al. KDOQI US commentary on the 2017 KDIGO clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease–mineral and bone disorder (CKD-MBD). Am. J. Kidney Dis. 70, 737–751 (2017).
pubmed: 28941764 doi: 10.1053/j.ajkd.2017.07.019
Lamb, E. J., Levey, A. S. & Stevens, P. E. The kidney disease improving global outcomes (KDIGO) guideline update for chronic kidney disease: evolution not revolution. Clin. Chem. 59, 462–465 (2020).
doi: 10.1373/clinchem.2012.184259
Levey, A. S., Becker, C. & Inker, L. A. Glomerular filtration rate and albuminuria for detection and staging of acute and chronic kidney disease in adults: a systematic review. JAMA 313, 837–846 (2015).
pubmed: 25710660 pmcid: 4410363 doi: 10.1001/jama.2015.0602
Lombel, R. M., Gipson, D. S. & Hodson, E. M. Kidney Disease: Improving Global Outcomes. Treatment of steroid-sensitive nephrotic syndrome: new guidelines from KDIGO. Pediatr. Nephrol. 28, 415–426 (2013).
pubmed: 23052651 doi: 10.1007/s00467-012-2310-x
Lombel, R. M., Hodson, E. M. & Gipson, D. S. Kidney Disease: Improving Global Outcomes. Treatment of steroid-resistant nephrotic syndrome in children: new guidelines from KDIGO. Pediatr. Nephrol. 28, 409–414 (2013).
pubmed: 23052648 doi: 10.1007/s00467-012-2304-8
Inrig, J. K. et al. The landscape of clinical trials in nephrology: a systematic review of Clinicaltrials.gov. Am. J. Kidney Dis. 63, 771–780 (2014).
pubmed: 24315119 doi: 10.1053/j.ajkd.2013.10.043
Haring, R. & Wallaschofski, H. Diving through the “-omics”: the case for deep phenotyping and systems epidemiology. OMICS 16, 231–234 (2012).
pubmed: 22320900 pmcid: 3339382 doi: 10.1089/omi.2011.0108
Gadegbeku, C. A. et al. Design of the nephrotic syndrome study network (NEPTUNE) to evaluate primary glomerular nephropathy by a multidisciplinary approach. Kidney Int. 83, 749–756 (2013).
pubmed: 23325076 pmcid: 3612359 doi: 10.1038/ki.2012.428
Nair, V. et al. A molecular morphometric approach to diabetic kidney disease can link structure to function and outcome. Kidney Int. 93, 439–449 (2018).
pubmed: 29054530 doi: 10.1016/j.kint.2017.08.013
Townsend, R. R. et al. Rationale and design of the transformative research in diabetic nephropathy (TRIDENT) study. Kidney Int. 97, 10–13 (2020).
pubmed: 31901339 doi: 10.1016/j.kint.2019.09.020 pmcid: 31901339
Groopman, E. E. et al. Diagnostic utility of exome sequencing for kidney disease. N. Engl. J. Med. 380, 142–151 (2019).
pubmed: 30586318 doi: 10.1056/NEJMoa1806891
Wuttke, M. et al. A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nat. Genet. 51, 957–972 (2019).
pubmed: 31152163 pmcid: 31152163 doi: 10.1038/s41588-019-0407-x
Hellwege, J. N. et al. Mapping eGFR loci to the renal transcriptome and phenome in the VA Million Veteran Program. Nat. Commun. 10, 3842 (2019).
pubmed: 31451708 pmcid: 6710266 doi: 10.1038/s41467-019-11704-w
Chu, A. Y. et al. Epigenome-wide association studies identify DNA methylation associated with kidney function. Nat. Commun. 8, 1286 (2017).
pubmed: 29097680 pmcid: 5668367 doi: 10.1038/s41467-017-01297-7
Coit, P. et al. Renal involvement in lupus is characterized by unique DNA methylation changes in naïve CD4+ T cells. J. Autoimmun. 61, 29–35 (2015).
pubmed: 26005050 pmcid: 4497927 doi: 10.1016/j.jaut.2015.05.003
Cohen, C. D., Frach, K., Schlondorff, D. & Kretzler, M. Quantitative gene expression analysis in renal biopsies: a novel protocol for a high-throughput multicenter application. Kidney Int. 61, 133–140 (2002).
pubmed: 11786093 doi: 10.1046/j.1523-1755.2002.00113.x
Lee, J. W., Chou, C.-L. & Knepper, M. A. Deep sequencing in microdissected renal tubules identifies nephron segment-specific transcriptomes. J. Am. Soc. Nephrol. 26, 2669–2677 (2015).
pubmed: 25817355 pmcid: 4625681 doi: 10.1681/ASN.2014111067
Wang, X., Park, J., Susztak, K., Zhang, N. R. & Li, M. Bulk tissue cell type deconvolution with multi-subject single-cell expression reference. Nat. Commun. 10, 380 (2019).
pubmed: 30670690 pmcid: 6342984 doi: 10.1038/s41467-018-08023-x
Park, J. et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 360, 758–763 (2018).
pubmed: 29622724 pmcid: 29622724 doi: 10.1126/science.aar2131
Czerniecki, S. M. et al. High-throughput screening enhances kidney organoid differentiation from human pluripotent stem cells and enables automated multidimensional phenotyping. Cell Stem Cell 22, 929–940 (2018).
pubmed: 29779890 pmcid: 5984728 doi: 10.1016/j.stem.2018.04.022
Rinschen, M. M., Limbutara, K., Knepper, M. A., Payne, D. M. & Pisitkun, T. From molecules to mechanisms: functional proteomics and its application to renal tubule physiology. Physiol. Rev. 98, 2571–2606 (2018).
pubmed: 30182799 pmcid: 6335097 doi: 10.1152/physrev.00057.2017
Kalim, S. & Rhee, E. P. Metabolomics and kidney precision medicine. Clin. J. Am. Soc. Nephrol. 12, 1726–1727 (2017).
pubmed: 28971981 pmcid: 5672979 doi: 10.2215/CJN.09480817
Saez-Rodriguez, J., Rinschen, M. M., Floege, J. & Kramann, R. Big science and big data in nephrology. Kidney Int. 95, 1326–1337 (2019).
pubmed: 30982672 doi: 10.1016/j.kint.2018.11.048
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).
Ko, Y. A. et al. Genetic-variation-driven gene-expression changes highlight genes with important functions for kidney disease. Am. J. Hum. Genet. 100, 940–953 (2017).
pubmed: 28575649 pmcid: 5473735 doi: 10.1016/j.ajhg.2017.05.004
Gillies, C. E. et al. An eQTL landscape of kidney tissue in human nephrotic syndrome. Am. J. Hum. Genet. 103, 232–244 (2018).
pubmed: 30057032 pmcid: 6081280 doi: 10.1016/j.ajhg.2018.07.004
Qiu, C. et al. Renal compartment–specific genetic variation analyses identify new pathways in chronic kidney disease. Nat. Med. 24, 1721–1731 (2018).
pubmed: 30275566 pmcid: 6301011 doi: 10.1038/s41591-018-0194-4
Martini, S. et al. Integrative biology identifies shared transcriptional networks in CKD. J. Am. Soc. Nephrol. 25, 2559–2572 (2014).
pubmed: 24925724 pmcid: 4214523 doi: 10.1681/ASN.2013080906
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03550443 (2019).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03749447 (2019).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03019185 (2019).
Tuttle, K. R. et al. JAK1/JAK2 inhibition by baricitinib in diabetic kidney disease: results from a phase 2 randomized controlled clinical trial. Nephrol. Dialysis Transplant. 33, 1950–1959 (2018).
doi: 10.1093/ndt/gfx377
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00098020 (2017).
Hodgin, J. B. et al. Identification of cross-species shared transcriptional networks of diabetic nephropathy in human and mouse glomeruli. Diabetes 62, 299–308 (2013).
pubmed: 23139354 doi: 10.2337/db11-1667 pmcid: 23139354
Berthier, C. C. et al. Enhanced expression of Janus kinase-signal transducer and activator of transcription pathway members in human diabetic nephropathy. Diabetes 58, 469–477 (2009).
pubmed: 19017763 pmcid: 2628622 doi: 10.2337/db08-1328
Zhang, H. et al. Podocyte-specific JAK2 overexpression worsens diabetic kidney disease in mice. Kidney Int. 92, 909–921 (2017).
pubmed: 28554737 pmcid: 5610635 doi: 10.1016/j.kint.2017.03.027
Tao, J. L. et al. JAK-STAT signaling is activated in the kidney and peripheral blood cells of patients with focal segmental glomerulosclerosis. Kidney Int. 94, 795–808 (2018).
pubmed: 30093081 pmcid: 6744284 doi: 10.1016/j.kint.2018.05.022
Hewitson, T. D. Renal tubulointerstitial fibrosis: common but never simple. Am. J. Physiol.-Renal Physiol. 296, F1239–F1244 (2009).
pubmed: 19144691 doi: 10.1152/ajprenal.90521.2008
Farris, A. B. & Colvin, R. B. Renal interstitial fibrosis: mechanisms and evaluation. Curr. Opin. Nephrol. Hypertens. 21, 289–300 (2012).
pubmed: 22449945 pmcid: 3354760 doi: 10.1097/MNH.0b013e3283521cfa
Kang, H. M. et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat. Med. 21, 37 (2014).
pubmed: 25419705 pmcid: 4444078 doi: 10.1038/nm.3762
Schroppel, B., Huber, S., Horster, M., Schlondorff, D. & Kretzler, M. Analysis of mouse glomerular podocyte mRNA by single-cell reverse transcription-polymerase chain reaction. Kidney Int. 53, 119–124 (1998).
pubmed: 9453007 doi: 10.1046/j.1523-1755.1998.00742.x
Ju, W. et al. Defining cell-type specificity at the transcriptional level in human disease. Genome Res. 23, 1862–1873 (2013).
pubmed: 23950145 pmcid: 3814886 doi: 10.1101/gr.155697.113
Potter, S. S. Single-cell RNA sequencing for the study of development, physiology and disease. Nat. Rev. Nephrol. 14, 479–492 (2018).
pubmed: 29789704 pmcid: 6070143 doi: 10.1038/s41581-018-0021-7
Menon, R. et al. Single cell transcriptomics identifies focal segmental glomerulosclerosis remission endothelial biomarker. JCI Insight 5, e133267 (2020).
pmcid: 7213795 doi: 10.1172/jci.insight.133267
Wilson, P. C. et al. The single-cell transcriptomic landscape of early human diabetic nephropathy. Proc. Natl Acad. Sci. USA 116, 19619–19625 (2019).
pubmed: 31506348 doi: 10.1073/pnas.1908706116
Arazi, A. et al. The immune cell landscape in kidneys of patients with lupus nephritis. Nat. Immunol. 20, 902–914 (2019).
pubmed: 31209404 pmcid: 6726437 doi: 10.1038/s41590-019-0398-x
Narain, S. & Furie, R. Update on clinical trials in systemic lupus erythematosus. Curr. Opin. Rheumatol. 28, 477–487 (2016).
pubmed: 27314466 doi: 10.1097/BOR.0000000000000311
Thanou, A. & Merrill, J. T. Treatment of systemic lupus erythematosus: new therapeutic avenues and blind alleys. Nat. Rev. Rheumatol. 10, 23–34 (2014).
pubmed: 24100460 doi: 10.1038/nrrheum.2013.145
Pennisi, E. Development cell by cell. Science 362, 1344–1345 (2018).
pubmed: 30573610 doi: 10.1126/science.362.6421.1344
Nishinakamura, R. Human kidney organoids: progress and remaining challenges. Nat. Rev. Nephrol. 15, 613–624 (2019).
doi: 10.1038/s41581-019-0176-x
Little, M. H. & Combes, A. N. Kidney organoids: accurate models or fortunate accidents. Genes. Dev. 33, 1319–1345 (2019).
pubmed: 31575677 pmcid: 6771389 doi: 10.1101/gad.329573.119
Harder, J. L. et al. Organoid single cell profiling identifies a transcriptional signature of glomerular disease. JCI Insight 4, pii: 122697 (2019).
doi: 10.1172/jci.insight.122697
Lemos, D. R. et al. Interleukin-1beta activates a MYC-dependent metabolic switch in kidney stromal cells necessary for progressive tubulointerstitial fibrosis. J. Am. Soc. Nephrol. 29, 1690–1705 (2018).
pubmed: 29739813 pmcid: 6054344 doi: 10.1681/ASN.2017121283
Beckerman, P. & Susztak, K. APOL1: the balance imposed by infection, selection, and kidney disease. Trends Mol. Med. 24, 682–695 (2018).
pubmed: 29886044 pmcid: 6101980 doi: 10.1016/j.molmed.2018.05.008
Schmidt-Ott, K. M. How to grow a kidney: patient-specific kidney organoids come of age. Nephrol. Dial. Transpl. 32, 17–23 (2016).
Hale, L. J. et al. 3D organoid-derived human glomeruli for personalised podocyte disease modelling and drug screening. Nat. Commun. 9, 5167 (2018).
pubmed: 30514835 pmcid: 6279764 doi: 10.1038/s41467-018-07594-z
Borestrom, C. et al. A CRISP(e)R view on kidney organoids allows generation of an induced pluripotent stem cell-derived kidney model for drug discovery. Kidney Int. 94, 1099–1110 (2018).
pubmed: 30072040 doi: 10.1016/j.kint.2018.05.003
Soo, J. Y. C., Jansen, J., Masereeuw, R. & Little, M. H. Advances in predictive in vitro models of drug-induced nephrotoxicity. Nat. Rev. Nephrol. 14, 378–393 (2018).
pubmed: 29626199 pmcid: 6013592 doi: 10.1038/s41581-018-0003-9
KDIGO. KDIGO Guidelines. CKD Evaluation and Management https://kdigo.org/guidelines/ckd-evaluation-and-management/ (2012).
KDIGO. KDIGO Guidelines. Glomerulonephritis https://kdigo.org/guidelines/gn/ (2012).
Himmelfarb, J. Kidney precision medicine project: hope for the future. ASN Kidney N. 11(March), 16 https://www.asn-online.org/publications/kidneynews/archives/2019/KN_2019_03_mar.pdf (2019).
Mariani, L. Perspectives from a junior investigator in the kidney precision medicine project. ASN Kidney N. 11(March), 16–17, https://www.asn-online.org/publications/kidneynews/archives/2019/KN_2019_03_mar.pdf (2019).
Amezquita, R. A. et al. Orchestrating single-cell analysis with bioconductor. Nat. Methods 17, 137–145 (2020).
pubmed: 31792435 doi: 10.1038/s41592-019-0654-x
Glassock, R. J. & Winearls, C. Screening for CKD with eGFR: doubts and dangers. Clin. J. Am. Soc. Nephrol. 3, 1563–1568 (2008).
pubmed: 18667744 pmcid: 4571145 doi: 10.2215/CJN.00960208
Ju, W. et al. Tissue transcriptome-driven identification of epidermal growth factor as a chronic kidney disease biomarker. Sci. Transl. Med. 7, 316ra193 (2015).
pubmed: 26631632 pmcid: 4861144 doi: 10.1126/scitranslmed.aac7071
Satirapoj, B., Pooluea, P., Nata, N. & Supasyndh, O. Urinary biomarkers of tubular injury to predict renal progression and end stage renal disease in type 2 diabetes mellitus with advanced nephropathy: a prospective cohort study. J. Diabetes Complicat. 33, 675–681 (2019).
doi: 10.1016/j.jdiacomp.2019.05.013
Pontillo, C. & Mischak, H. Urinary peptide-based classifier CKD273: towards clinical application in chronic kidney disease. Clin. Kidney J. 10, 192–201 (2017).
pubmed: 28694965 pmcid: 5499684 doi: 10.1093/ckj/sfx002
Siwy, J., Klein, T., Rosler, M. & von Eynatten, M. Urinary proteomics as a tool to identify kidney responders to dipeptidyl peptidase-4 inhibition: a hypothesis-generating analysis from the MARLINA-T2D Trial. Proteom. Clin. Appl. 13, 1800144 (2019).
doi: 10.1002/prca.201800144
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04009668 (2019).
Mariani, L. H. et al. Interstitial fibrosis scored on whole-slide digital imaging of kidney biopsies is a predictor of outcome in proteinuric glomerulopathies. Nephrol. Dial. Transpl. 33, 310–318 (2018).
doi: 10.1093/ndt/gfw443
Wu, L. et al. Urinary epidermal growth factor predicts renal prognosis in antineutrophil cytoplasmic antibody-associated vasculitis. Ann. Rheum. Dis. 77, 1339–1344 (2018).
pubmed: 29724728 doi: 10.1136/annrheumdis-2017-212578
Li, B. et al. Urinary epidermal growth factor as a prognostic marker for the progression of Alport syndrome in children. Pediatr. Nephrol. 33, 1731–1739 (2018).
pubmed: 29948307 pmcid: 6132884 doi: 10.1007/s00467-018-3988-1
Azukaitis, K. et al. Low levels of urinary epidermal growth factor predict chronic kidney disease progression in children. Kidney Int. 96, 214–221 (2019).
pubmed: 31005273 doi: 10.1016/j.kint.2019.01.035
Yepes-Calderón, M. et al. Urinary epidermal growth factor/creatinine ratio and graft failure in renal transplant recipients: a prospective cohort study. J. Clin. Med. 8, 1673 (2019).
pmcid: 6832301 doi: 10.3390/jcm8101673 pubmed: 6832301
Boustany, R. N., Kaye, E. & Alroy, J. Ultrastructural findings in skin from patients with Niemann-Pick disease, type C. Pediatr. Neurol. 6, 177–183 (1990).
pubmed: 2360958 doi: 10.1016/0887-8994(90)90059-A
Argilés, À. et al. CKD273, a new proteomics classifier assessing CKD and its prognosis. PLoS One 8, e62837 (2013).
pubmed: 23690958 pmcid: 3653906 doi: 10.1371/journal.pone.0062837
Critselis, E. & Lambers Heerspink, H. Utility of the CKD273 peptide classifier in predicting chronic kidney disease progression. Nephrol. Dial. Transpl. 31, 249–254 (2015).
Pontillo, C. et al. Prediction of chronic kidney disease stage 3 by CKD273, a urinary proteomic biomarker. Kidney Int. Rep. 2, 1066–1075 (2017).
pubmed: 29130072 pmcid: 5669285 doi: 10.1016/j.ekir.2017.06.004
Humphreys, B. D. Mechanisms of renal fibrosis. Annu. Rev. Physiol. 80, 309–326 (2018).
pubmed: 29068765 doi: 10.1146/annurev-physiol-022516-034227
Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).
pubmed: 19114008 pmcid: 19114008 doi: 10.1186/1471-2105-9-559
Lee, E., Chuang, H.-Y., Kim, J.-W., Ideker, T. & Lee, D. Inferring pathway activity toward precise disease classification. PLoS Comput. Biol. 4, e1000217 (2008).
pubmed: 18989396 pmcid: 2563693 doi: 10.1371/journal.pcbi.1000217
Subramanian, A. et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 171, 1437–1452 (2017).
pubmed: 29195078 pmcid: 29195078 doi: 10.1016/j.cell.2017.10.049
Lamb, J. et al. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006).
pubmed: 17008526 doi: 10.1126/science.1132939
Grayson, P. C. et al. Metabolic pathways and immunometabolism in rare kidney diseases. Ann. Rheum. Dis. 77, 1226–1233 (2018).
pubmed: 29724730 pmcid: 6045442
Taroni, J. N. et al. MultiPLIER: a transfer learning framework for transcriptomics reveals systemic features of rare disease. Cell Syst. 8, 380–394 e384 (2019).
pubmed: 6538307 pmcid: 6538307 doi: 10.1016/j.cels.2019.04.003
Mao, W., Zaslavsky, E., Hartmann, B. M., Sealfon, S. C. & Chikina, M. Pathway-level information extractor (PLIER) for gene expression data. Nat. Methods 16, 607–610 (2019).
pubmed: 31249421 pmcid: 7262669 doi: 10.1038/s41592-019-0456-1
Thomas, P. D. in The Gene Ontology Handbook (eds Christophe Dessimoz & Nives Škunca) 15–24 (Springer, 2017).
Lewis, S. E. in The Gene Ontology Handbook (eds Christophe Dessimoz & Nives Škunca) 291–302 (Springer, 2017).
The Gene Ontology Consortium. Expansion of the gene ontology knowledgebase and resources. Nucleic Acids Res. 45, D331–D338 (2016).
pmcid: 5210579 doi: 10.1093/nar/gkw1108
The Gene Ontology Consortium. The gene ontology resource: 20 years and still going strong. Nucleic Acids Res. 47, D330–D338 (2018).
pmcid: 6323945 doi: 10.1093/nar/gky1055 pubmed: 6323945
Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).
pubmed: 3037419 pmcid: 3037419 doi: 10.1038/75556
Ma, J. et al. Differential network enrichment analysis reveals novel lipid pathways in chronic kidney disease. Bioinformatics 35, 3441–3452 (2019).
pubmed: 30887029 pmcid: 6748777 doi: 10.1093/bioinformatics/btz114
Afshinnia, F. et al. Impaired beta-oxidation and altered complex lipid fatty acid partitioning with advancing CKD. J. Am. Soc. Nephrol. 29, 295–306 (2018).
pubmed: 29021384 doi: 10.1681/ASN.2017030350
Afshinnia, F. et al. Lipidomic signature of progression of chronic kidney disease in the chronic renal insufficiency cohort. Kidney Int. Rep. 1, 256–268 (2016).
pubmed: 28451650 pmcid: 5402253 doi: 10.1016/j.ekir.2016.08.007
Sealfon, R. S. G., Mariani, L. H., Kretzler, M. & Troyanskaya, O. G. Machine learning, the kidney, and genotype-phenotype analysis. Kidney Int. 14, 162 (2020).
Martini, S., Eichinger, F., Nair, V. & Kretzler, M. Defining human diabetic nephropathy on the molecular level: integration of transcriptomic profiles with biological knowledge. Rev. Endocr. Metab. Disord. 9, 267–274 (2008).
pubmed: 18704688 pmcid: 2597685 doi: 10.1007/s11154-008-9103-3
Wu, H. et al. Single-cell transcriptomics of a human kidney allograft biopsy specimen defines a diverse inflammatory response. J. Am. Soc. Nephrol. 29, 2069–2080 (2018).
pubmed: 29980650 pmcid: 6065085 doi: 10.1681/ASN.2018020125
Greene, C. S. et al. Understanding multicellular function and disease with human tissue-specific networks. Nat. Genet. 47, 569–576 (2015).
pubmed: 25915600 pmcid: 4828725 doi: 10.1038/ng.3259
Krishnan, A. et al. Genome-wide prediction and functional characterization of the genetic basis of autism spectrum disorder. Nat. Neurosci. 19, 1454–1462 (2016).
pubmed: 27479844 pmcid: 5803797 doi: 10.1038/nn.4353
Zhou, J. et al. Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk. Nat. Genet. 50, 1171–1179 (2018).
pubmed: 30013180 pmcid: 6094955 doi: 10.1038/s41588-018-0160-6
McMahon, A. P. et al. GUDMAP: the genitourinary developmental molecular anatomy project. J. Am. Soc. Nephrol. 19, 667–671 (2008).
pubmed: 18287559 doi: 10.1681/ASN.2007101078
Harding, S. D. et al. The GUDMAP database — an online resource for genitourinary research. Development 138, 2845–2853 (2011).
pubmed: 21652655 pmcid: 3188593 doi: 10.1242/dev.063594
Oxburgh, L. et al. (Re)building a kidney. J. Am. Soc. Nephrol. 28, 1370–1378 (2017).
pubmed: 28096308 pmcid: 5407737 doi: 10.1681/ASN.2016101077
Athey, B. D., Braxenthaler, M., Haas, M. & Guo, Y. tranSMART: an open source and community-driven informatics and data sharing platform for clinical and translational research. AMIA Jt. Summits Transl. Sci. Proc. 2013, 6–8 (2013).
pubmed: 24303286 pmcid: 3814495
Connor, E. Translating expertise: the Librarian’s role in translational research. JMLA 106, 137–137 (2018).
doi: 10.5195/JMLA.2018.349
Dankar, F. K., Ptitsyn, A. & Dankar, S. K. The development of large-scale de-identified biomedical databases in the age of genomics-principles and challenges. Hum. Genomics 12, 19 (2018).
pubmed: 29636096 pmcid: 5894154 doi: 10.1186/s40246-018-0147-5
Salerno, J., Knoppers, B. M., Lee, L. M., Hlaing, W. M. & Goodman, K. W. Ethics, big data and computing in epidemiology and public health. Ann. Epidemiol. 27, 297–301 (2017).
pubmed: 28595734 doi: 10.1016/j.annepidem.2017.05.002
Zarate, O. A. et al. Balancing benefits and risks of immortal data. Hastings Cent. Rep. 46, 36–45 (2016).
pubmed: 26678513 doi: 10.1002/hast.523
Gymrek, M., McGuire, A. L., Golan, D., Halperin, E. & Erlich, Y. Identifying personal genomes by surname inference. Science 339, 321–324 (2013).
pubmed: 23329047 doi: 10.1126/science.1229566
Chico, V. The impact of the general data protection regulation on health research. Br. Med. Bull. 128, 109–118 (2018).
pubmed: 30445448 doi: 10.1093/bmb/ldy038
Sarkar, H., Srivastava, A. & Patro, R. Minnow: a principled framework for rapid simulation of dscRNA-seq data at the read level. Bioinformatics 35, i136–i144 (2019).
pubmed: 31510649 pmcid: 6612833 doi: 10.1093/bioinformatics/btz351
Chung, R.-H. & Kang, C.-Y. A multi-omics data simulator for complex disease studies and its application to evaluate multi-omics data analysis methods for disease classification. GigaScience 8, giz045 (2019).
pubmed: 31029063 pmcid: 6486474 doi: 10.1093/gigascience/giz045
Wang, B. et al. Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods 11, 333–337 (2014).
pubmed: 24464287 doi: 10.1038/nmeth.2810
Argelaguet, R. et al. Multi-omics factor analysis — a framework for unsupervised integration of multi-omics data sets. Mol. Syst. Biol. 14, e8124 (2018).
pubmed: 6010767 pmcid: 6010767 doi: 10.15252/msb.20178124
Pedigo, C. E. et al. Local TNF causes NFATc1-dependent cholesterol-mediated podocyte injury. J. Clin. Invest. 126, 3336–3350 (2016).
pubmed: 27482889 pmcid: 5004940 doi: 10.1172/JCI85939
Mitrofanova, A. et al. Hydroxypropyl-beta-cyclodextrin protects from kidney disease in experimental Alport syndrome and focal segmental glomerulosclerosis. Kidney Int. 94, 1151–1159 (2018).
pubmed: 30301568 pmcid: 6278936 doi: 10.1016/j.kint.2018.06.031
Keenan, A. B. et al. The library of integrated network-based cellular signatures NIH program: system-level cataloging of human cells response to perturbations. Cell Syst. 6, 13–24 (2018).
pubmed: 29199020 doi: 10.1016/j.cels.2017.11.001

Auteurs

Sean Eddy (S)

Division of Nephrology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA.

Laura H Mariani (LH)

Division of Nephrology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA.

Matthias Kretzler (M)

Division of Nephrology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA. kretzler@med.umich.edu.
Department of Computational Medicine and Bioinformatics, Michigan Medicine, Ann Arbor, MI, USA. kretzler@med.umich.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH