Tetrazolium reduction assays under-report cell death provoked by clinically relevant concentrations of proteasome inhibitors.
Antineoplastic Agents
/ pharmacology
Biological Assay
Caspases
/ metabolism
Catalysis
Cell Death
/ drug effects
Cell Survival
/ drug effects
Formazans
/ chemistry
Humans
NADH Tetrazolium Reductase
/ metabolism
Proteasome Inhibitors
/ metabolism
Reproducibility of Results
Signal Transduction
/ drug effects
Tetrazolium Salts
/ chemistry
Thiazoles
/ pharmacology
Bortezomib
Cell viability
MTT assay
Proteasome inhibitors
Journal
Molecular biology reports
ISSN: 1573-4978
Titre abrégé: Mol Biol Rep
Pays: Netherlands
ID NLM: 0403234
Informations de publication
Date de publication:
Jun 2020
Jun 2020
Historique:
received:
07
02
2020
accepted:
14
05
2020
pubmed:
20
5
2020
medline:
17
2
2021
entrez:
20
5
2020
Statut:
ppublish
Résumé
High throughput cell viability screening assays often capitalize on the ability of active enzymes or molecules within viable cells to catalyze a quantifiable chemical reaction. The tetrazolium reduction (MTT) assay relies on oxidoreductases to reduce tetrazolium into purple formazan crystals that are solubilized so absorbance reflects viability, while other assays use cellular ATP to catalyze a luminescence-emitting reaction. It is therefore important to know how accurately these assays report cellular responses, as cytotoxic anti-cancer agents promote cell death via a variety of signaling pathways, some of which may alter how these assays work. In this study, we compared the magnitude of cytotoxicity to different cell types provoked by currently used anti-cancer agents, using three different cell viability assays. We found the three assays were consistent in reporting the viability of cells treated with chemotherapy drugs or the BH3 mimetic navitoclax, but the MTT assay underreported the killing capacity of proteasome inhibitors. Additionally, the MTT assay failed to confirm the induction of caspase-mediated cell death by bortezomib at physiologically relevant concentrations, thereby mischaracterizing the mode of cell death. While the cell viability assays used allow for the rapid identification of novel cytotoxic compounds, our study emphasizes the importance for these screening assays to be complemented with a direct measure of cell death or another independent measure of cell viability. We caution researchers against using MTT assays for monitoring cytotoxicity induced by proteasome inhibitors.
Identifiants
pubmed: 32424523
doi: 10.1007/s11033-020-05530-3
pii: 10.1007/s11033-020-05530-3
doi:
Substances chimiques
Antineoplastic Agents
0
Formazans
0
Proteasome Inhibitors
0
Tetrazolium Salts
0
Thiazoles
0
NADH Tetrazolium Reductase
EC 1.6.-
Caspases
EC 3.4.22.-
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4849-4856Références
Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63. https://doi.org/10.1016/0022-1759(83)90303-4
doi: 10.1016/0022-1759(83)90303-4
pubmed: 6606682
Lomakina GY, Modestova YA, Ugarova NN (2015) Bioluminescence assay for cell viability. Biochemistry (Mosc) 80(6):701–713. https://doi.org/10.1134/S0006297915060061
doi: 10.1134/S0006297915060061
Niles AL, Moravec RA, Eric Hesselberth P, Scurria MA, Daily WJ, Riss TL (2007) A homogeneous assay to measure live and dead cells in the same sample by detecting different protease markers. Anal Biochem 366(2):197–206. https://doi.org/10.1016/j.ab.2007.04.007
doi: 10.1016/j.ab.2007.04.007
pubmed: 17512890
Guo KY, Han L, Li X, Yang AV, Lu J, Guan S, Li H, Yu Y, Zhao Y, Yang J, Zhang H (2017) Novel proteasome inhibitor delanzomib sensitizes cervical cancer cells to doxorubicin-induced apoptosis via stabilizing tumor suppressor proteins in the p53 pathway. Oncotarget 8(69):114123–114135. https://doi.org/10.18632/oncotarget.23166
doi: 10.18632/oncotarget.23166
pubmed: 29371974
pmcid: 5768391
Foight GW, Ryan JA, Gullá SV, Letai A, Keating AE (2014) Designed BH3 peptides with high affinity and specificity for targeting Mcl-1 in cells. ACS Chem Biol 9(9):1962–1968. https://doi.org/10.1021/cb500340w
doi: 10.1021/cb500340w
pubmed: 25052212
pmcid: 4168798
Akasov R, Drozdova M, Zaytseva-Zotova D, Leko M, Chelushkin P, Marc A, Chevalot I, Burov S, Klyachko N, Vandamme T, Markvicheva E (2017) Novel doxorubicin derivatives: synthesis and cytotoxicity study in 2D and 3D in vitro models. Adv Pharm Bull 7(4):593–601. https://doi.org/10.15171/apb.2017.071
doi: 10.15171/apb.2017.071
pubmed: 29399549
pmcid: 5788214
Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD, Maas J, Pien CS, Prakash S, Elliott PJ (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Can Res 59(11):2615–2622
Weyburne ES, Wilkins OM, Sha Z, Williams DA, Pletnev AA, de Bruin G, Overkleeft HS, Goldberg AL, Cole MD, Kisselev AF (2017) Inhibition of the proteasome beta2 site sensitizes triple-negative breast cancer cells to beta5 inhibitors and suppresses Nrf1 activation. Cell Chem Biol 24(2):218–230. https://doi.org/10.1016/j.chembiol.2016.12.016
doi: 10.1016/j.chembiol.2016.12.016
pubmed: 28132893
pmcid: 5341617
Manasanch EE, Orlowski RZ (2017) Proteasome inhibitors in cancer therapy. Nat Rev Clin Oncol 14(7):417–433. https://doi.org/10.1038/nrclinonc.2016.206
doi: 10.1038/nrclinonc.2016.206
pubmed: 28117417
pmcid: 5828026
Marinello J, Delcuratolo M, Capranico G (2018) Anthracyclines as Topoisomerase II poisons: from early studies to new perspectives. Int J Mol Sci 19(11):3480. https://doi.org/10.3390/ijms19113480
doi: 10.3390/ijms19113480
pmcid: 6275052
Singh R, Letai A, Sarosiek K (2019) Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol 20(3):175–193. https://doi.org/10.1038/s41580-018-0089-8
doi: 10.1038/s41580-018-0089-8
pubmed: 30655609
pmcid: 7325303
Shekhar TM, Miles MA, Gupte A, Taylor S, Tascone B, Walkley CR, Hawkins CJ (2016) IAP antagonists sensitize murine osteosarcoma cells to killing by TNFα. Oncotarget 7(23):33866–33886. https://doi.org/10.18632/oncotarget.8980
doi: 10.18632/oncotarget.8980
pubmed: 27129149
pmcid: 5085125
Tada H, Shiho O, Kuroshima K, Koyama M, Tsukamoto K (1986) An improved colorimetric assay for interleukin 2. J Immunol Methods 93(2):157–165. https://doi.org/10.1016/0022-1759(86)90183-3
doi: 10.1016/0022-1759(86)90183-3
pubmed: 3490518
Miles MA, Harris MA, Hawkins CJ (2019) Proteasome inhibitors trigger mutations via activation of caspases and CAD, but mutagenesis provoked by the HDAC inhibitors vorinostat and romidepsin is caspase/CAD-independent. Apoptosis 24(5):404–413. https://doi.org/10.1007/s10495-019-01543-x
doi: 10.1007/s10495-019-01543-x
pubmed: 30997620
Patatsos K, Shekhar TM, Hawkins CJ (2018) Pre-clinical evaluation of proteasome inhibitors for canine and human osteosarcoma. Vet Comp Oncol. https://doi.org/10.1111/vco.12413
doi: 10.1111/vco.12413
pubmed: 29998615
Sishi BJ, Loos B, van Rooyen J, Engelbrecht AMJT (2013) Doxorubicin induces protein ubiquitination and inhibits proteasome activity during cardiotoxicity. Toxicology 309:23–29
doi: 10.1016/j.tox.2013.04.016
pubmed: 23639627
Tacar O, Sriamornsak P, Dass CR (2013) Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 65(2):157–170. https://doi.org/10.1111/j.2042-7158.2012.01567.x
doi: 10.1111/j.2042-7158.2012.01567.x
pubmed: 23278683
Ashkenazi A, Fairbrother WJ, Leverson JD, Souers AJ (2017) From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov 16(4):273–284. https://doi.org/10.1038/nrd.2016.253
doi: 10.1038/nrd.2016.253
pubmed: 28209992
Zhang B, Gu Y (2015) Bortezomib inhibits gastric carcinoma HGC-27 cells through the phospho-Jun N-terminal kinase (p-JNK) pathway in vitro. Gene 559(2):164–171. https://doi.org/10.1016/j.gene.2015.01.035
doi: 10.1016/j.gene.2015.01.035
pubmed: 25602436
Gong L, Yang B, Xu M, Cheng B, Tang X, Zheng P, Jing Y, Wu GJ (2014) Bortezomib-induced apoptosis in cultured pancreatic cancer cells is associated with ceramide production. Cancer Chemother Pharmacol 73(1):69–77. https://doi.org/10.1007/s00280-013-2318-3
doi: 10.1007/s00280-013-2318-3
pubmed: 24190701
Lai F, Shen Z, Wen H, Chen J, Zhang X, Lin P, Yin D, Cui H, Chen X (2017) A Morphological identification cell cytotoxicity assay using cytoplasm-localized fluorescent probe (CLFP) to distinguish living and dead cells. Biochem Biophys Res Commun 482(2):257–263. https://doi.org/10.1016/j.bbrc.2016.09.169
doi: 10.1016/j.bbrc.2016.09.169
pubmed: 27845044
Yang Y, Lu Y, Wu QY, Hu HY, Chen YH, Liu WL (2015) Evidence of ATP assay as an appropriate alternative of MTT assay for cytotoxicity of secondary effluents from WWTPs. Ecotoxicol Environ Saf 122:490–496. https://doi.org/10.1016/j.ecoenv.2015.09.006
doi: 10.1016/j.ecoenv.2015.09.006
pubmed: 26410194
Ross D, Siegel D (2017) Functions of NQO1 in cellular protection and CoQ10 metabolism and its potential role as a redox sensitive molecular switch. Front Physiol 8:595. https://doi.org/10.3389/fphys.2017.00595
doi: 10.3389/fphys.2017.00595
pubmed: 28883796
pmcid: 5573868
Moscovitz O, Tsvetkov P, Hazan N, Michaelevski I, Keisar H, Ben-Nissan G, Shaul Y, Sharon M (2012) A mutually inhibitory feedback loop between the 20S proteasome and its regulator, NQO1. Mol Cell 47(1):76–86. https://doi.org/10.1016/j.molcel.2012.05.049
doi: 10.1016/j.molcel.2012.05.049
pubmed: 22793692
Wang P, Henning SM, Heber D (2010) Limitations of MTT and MTS-based assays for measurement of antiproliferative activity of green tea polyphenols. PLoS ONE 5(4):e10202–e10202. https://doi.org/10.1371/journal.pone.0010202
doi: 10.1371/journal.pone.0010202
pubmed: 20419137
pmcid: 2855713