Effects of thermal annealing on localization and strain in core/multishell GaAs/GaNAs/GaAs nanowires.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
19 May 2020
19 May 2020
Historique:
received:
24
01
2020
accepted:
27
04
2020
entrez:
20
5
2020
pubmed:
20
5
2020
medline:
20
5
2020
Statut:
epublish
Résumé
Core/shell nanowire (NW) heterostructures based on III-V semiconductors and related alloys are attractive for optoelectronic and photonic applications owing to the ability to modify their electronic structure via bandgap and strain engineering. Post-growth thermal annealing of such NWs is often involved during device fabrication and can also be used to improve their optical and transport properties. However, effects of such annealing on alloy disorder and strain in core/shell NWs are not fully understood. In this work we investigate these effects in novel core/shell/shell GaAs/GaNAs/GaAs NWs grown by molecular beam epitaxy on (111) Si substrates. By employing polarization-resolved photoluminescence measurements, we show that annealing (i) improves overall alloy uniformity due to suppressed long-range fluctuations in the N composition; (ii) reduces local strain within N clusters acting as quantum dot emitters; and (iii) leads to partial relaxation of the global strain caused by the lattice mismatch between GaNAs and GaAs. Our results, therefore, underline applicability of such treatment for improving optical quality of NWs from highly-mismatched alloys. They also call for caution when using ex-situ annealing in strain-engineered NW heterostructures.
Identifiants
pubmed: 32427905
doi: 10.1038/s41598-020-64958-6
pii: 10.1038/s41598-020-64958-6
pmc: PMC7237432
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
8216Références
Sang, S. et al. Progress of new label-free techniques for biosensors: A review. Crit. Rev. Biotechnol. 36, 465–481 (2016).
pubmed: 25608959
Kaushik, A. et al. Silica nanowires: Growth, integration, and sensing applications. Microchim. Acta 181, 1759–1780 (2014).
doi: 10.1007/s00604-014-1255-0
Ambhorkar, P. et al. Nanowire-based biosensors: From growth to applications. Micromachines 9, 679 (2018).
pmcid: 6316191
doi: 10.3390/mi9120679
pubmed: 6316191
Wang, J., Luo, J. W., Zhang, L. & Zunger, A. Reinterpretation of the expected electronic density of states of semiconductor nanowires. Nano Lett. 15, 88–95 (2015).
pubmed: 25435166
doi: 10.1021/nl5030062
Shiri, D., Kong, Y., Buin, A. & Anantram, M. P. Strain induced change of bandgap and effective mass in silicon nanowires. Appl. Phys. Lett. 93, 073114 (2008).
doi: 10.1063/1.2973208
Johnson, J. C. et al. Single gallium nitride nanowire lasers. Nat. Mater. 1, 106–110 (2002).
pubmed: 12618824
doi: 10.1038/nmat728
Kargar, F. et al. Direct observation of confined acoustic phonon polarization branches in free-standing semiconductor nanowires. Nat. Commun. 7, 13400 (2016).
pubmed: 27830698
pmcid: 5109588
doi: 10.1038/ncomms13400
Agarwal, R. & Lieber, C. M. Semiconductor nanowires: Optics and optoelectronics. Appl. Phys. A Mater. Sci. Process. 85, 209–215 (2006).
doi: 10.1007/s00339-006-3720-z
Sköld, N. et al. Growth and Optical Properties of Strained GaAs−Ga
pubmed: 16218714
doi: 10.1021/nl051304s
Montazeri, M. et al. Direct Measure of Strain and Electronic Structure in GaAs/GaP Core−Shell Nanowires. Nano Lett. 10, 880–886 (2010).
pubmed: 20131863
doi: 10.1021/nl903547r
Balaghi, L. et al. Widely tunable GaAs bandgap via strain engineering in core/shell nanowires with large lattice mismatch. Nat. Commun. 10, 2793 (2019).
pubmed: 31243278
pmcid: 6595053
doi: 10.1038/s41467-019-10654-7
Saxena, D. et al. Optically pumped room-temperature GaAs nanowire lasers. Nat. Photonics 7, 963–968 (2013).
doi: 10.1038/nphoton.2013.303
Koblmüller, G., Mayer, B., Stettner, T., Abstreiter, G. & Finley, J. J. GaAs-AlGaAs core-shell nanowire lasers on silicon: invited review. Semicond. Sci. Technol. 32, 053001 (2017).
doi: 10.1088/1361-6641/aa5e45
Saxena, D. et al. Design and Room-Temperature Operation of GaAs/AlGaAs Multiple Quantum Well Nanowire Lasers. Nano Lett. 16, 5080–5086 (2016).
pubmed: 27459233
doi: 10.1021/acs.nanolett.6b01973
Miao, X. et al. High-speed planar gaas nanowire arrays with f
pubmed: 25494481
doi: 10.1021/nl503596j
Miao, X. & Li, X. Scalable monolithically grown AlGaAs-GaAs planar nanowire high-electron-mobility transistor. IEEE Electron Device Lett. 32, 1227–1229 (2011).
doi: 10.1109/LED.2011.2160248
Bae, M. H. et al. Non-lithographic growth of core-shell GaAs nanowires on Si for optoelectronic applications. Cryst. Growth Des. 14, 1510–1515 (2014).
doi: 10.1021/cg401520q
Tomioka, K., Motohisa, J., Hara, S., Hiruma, K. & Fukui, T. GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. Nano Lett. 10, 1639–1644 (2010).
pubmed: 20377199
doi: 10.1021/nl9041774
Seyedi, M. A., Yao, M., O’Brien, J., Wang, S. Y. & Dapkus, P. D. Efficient Schottky-like junction GaAs nanowire photodetector with 9 GHz modulation bandwidth with large active area. Appl. Phys. Lett. 105, 041105 (2014).
doi: 10.1063/1.4891764
Dai, X. et al. GaAs/AlGaAs nanowire photodetector. Nano Lett. 14, 2688–2693 (2014).
pubmed: 24678794
doi: 10.1021/nl5006004
pmcid: 24678794
Krogstrup, P. et al. Single-nanowire solar cells beyond the Shockley-Queisser limit. Nat. Photonics 7, 306–310 (2013).
doi: 10.1038/nphoton.2013.32
Mohseni, P. K. et al. Monolithic III-V nanowire solar cells on graphene via direct van der Waals epitaxy. Adv. Mater. 26, 3755–3760 (2014).
pubmed: 24652703
doi: 10.1002/adma.201305909
pmcid: 24652703
Yao, M. et al. GaAs nanowire array solar cells with axial p-i-n junctions. Nano Lett. 14, 3293–3303 (2014).
pubmed: 24849203
doi: 10.1021/nl500704r
pmcid: 24849203
Shin, J. C. et al. In
pubmed: 21967406
doi: 10.1021/nl202676b
pmcid: 21967406
Bi, W. G. & Tu, C. W. Bowing parameter of the band-gap energy of GaN
doi: 10.1063/1.118630
Shan, W. et al. Effect of nitrogen on the band structure of GalnNAs alloys. J. Appl. Phys. 86, 2349–2351 (1999).
doi: 10.1063/1.371148
Shan, W. et al. Band Anticrossing in GaInNAs Alloys. Phys. Rev. Lett. 82, 1221–1224 (1999).
doi: 10.1103/PhysRevLett.82.1221
Skierbiszewski, C. et al. Large, nitrogen-induced increase of the electron effective mass in In
doi: 10.1063/1.126360
Masia, F. et al. Interaction between conduction band edge and nitrogen states probed by carrier effective-mass measurements in GaAs
doi: 10.1103/PhysRevB.73.073201
Lindsay, A. & O’Reilly, E. P. Unification of the band anticrossing and cluster-state models of dilute nitride semiconductor alloys. Phys. Rev. Lett. 93, 196402 (2004).
pubmed: 15600858
doi: 10.1103/PhysRevLett.93.196402
Tomić, S. et al. Influence of conduction-band nonparabolicity on electron confinement and effective mass in GaN
doi: 10.1103/PhysRevB.69.245305
Hai, P. N., Chen, W. M., Buyanova, I. A., Xin, H. P. & Tu, C. W. Direct determination of electron effective mass in GaNAs/GaAs quantum wells. Appl. Phys. Lett. 77, 1843–1845 (2000).
doi: 10.1063/1.1311324
Wang, X. J. et al. Room-temperature defect-engineered spin filter based on a non-magnetic semiconductor. Nat. Mater. 8, 198–202 (2009).
pubmed: 19219029
doi: 10.1038/nmat2385
Puttisong, Y. et al. Efficient room-temperature nuclear spin hyperpolarization of a defect atom in a semiconductor. Nat. Commun. 4, 1751 (2013).
pubmed: 23612292
doi: 10.1038/ncomms2776
Puttisong, Y. et al. Room-temperature electron spin amplifier based on Ga(In)NAs alloys. Adv. Mater. 25, 738–742 (2013).
pubmed: 23108727
doi: 10.1002/adma.201202597
Chen, S. et al. Room-temperature polarized spin-photon interface based on a semiconductor nanodisk-in-nanopillar structure driven by few defects. Nat. Commun. 9, 3575 (2018).
pubmed: 30177701
pmcid: 6120900
doi: 10.1038/s41467-018-06035-1
Buyanova, I. A. & Chen, W. M. Dilute nitrides-based nanowires - A promising platform for nanoscale photonics and energy technology. Nanotechnology 30, 292002 (2019).
pubmed: 30933933
doi: 10.1088/1361-6528/ab1516
Chen, S. et al. Dilute Nitride Nanowire Lasers Based on a GaAs/GaNAs Core/Shell Structure. Nano Lett. 17, 1775–1781 (2017).
pubmed: 28170267
doi: 10.1021/acs.nanolett.6b05097
Chen, S. et al. Near-Infrared Lasing at 1 μm from a Dilute-Nitride-Based Multishell Nanowire. Nano Lett. 19, 885–890 (2019).
pubmed: 30608174
doi: 10.1021/acs.nanolett.8b04103
Jansson, M., Ishikawa, F., Chen, W. M. & Buyanova, I. A. N-induced Quantum Dots in GaAs/Ga(N,As) Core/Shell Nanowires: Symmetry, Strain, and Electronic Structure. Phys. Rev. Appl. 10, 044040 (2018).
Spruytte, S. G. et al. Incorporation of nitrogen in nitride-arsenides: Origin of improved luminescence efficiency after anneal. J. Appl. Phys. 89, 4401–4406 (2001).
doi: 10.1063/1.1352675
Toivonen, J. et al. Observation of defect complexes containing Ga vacancies in GaAsN. Appl. Phys. Lett. 82, 40–42 (2003).
doi: 10.1063/1.1533843
Loke, W. K., Yoon, S. F., Wang, S. Z., Ng, T. K. & Fan, W. J. Rapid thermal annealing of GaN
doi: 10.1063/1.1454193
Li, W., Pessa, M., Ahlgren, T. & Decker, J. Origin of improved luminescence efficiency after annealing of Ga(In)NAs materials grown by molecular-beam epitaxy. Appl. Phys. Lett. 79, 1094–1096 (2001).
doi: 10.1063/1.1396316
Buyanova, I. A. et al. Mechanism for rapid thermal annealing improvements in undoped GaN
doi: 10.1063/1.1315632
Grenouillet, L. et al. Rapid thermal annealing in GaN
doi: 10.1063/1.1467957
Stehr, J. E. et al. Effects of growth temperature and thermal annealing on optical quality of GaNAs nanowires emitting in the near-infrared spectral range. Nanotechnology 31, 025702 (2019).
Yukimune, M. et al. Molecular beam epitaxial growth of dilute nitride GaNAs and GaInNAs nanowires. Nanotechnology 30, 244002 (2019).
pubmed: 30794991
doi: 10.1088/1361-6528/ab0974
Yukimune, M. et al. GaAs/GaNAs core-multishell nanowires with nitrogen composition exceeding 2%. Appl. Phys. Lett. 113, 011901 (2018).
doi: 10.1063/1.5029388
Ishikawa, F. et al. Unintentional source incorporation in plasma-assisted molecular beam epitaxy. Jpn. J. Appl. Phys. 48, 125501 (2009).
doi: 10.1143/JJAP.48.125501
Wu, S. et al. Nitrogen gas flow driven unintentional incorporation of Al during the growth of dilute nitride semiconductor by plasma-assisted molecular beam epitaxy. Appl. Phys. Express 1, 0350041–0350043 (2008).
doi: 10.1143/APEX.1.035004
Chen, S. L., Filippov, S., Ishikawa, F., Chen, W. M. & Buyanova, I. A. Origin of radiative recombination and manifestations of localization effects in GaAs/GaNAs core/shell nanowires. Appl. Phys. Lett. 105, 253106 (2014).
doi: 10.1063/1.4905090
Buyanova, I. A. et al. Mechanism for low-temperature photoluminescence in GaNAs/GaAs structures grown by molecular-beam epitaxy. Appl. Phys. Lett. 75, 501–503 (1999).
doi: 10.1063/1.124429
Filippov, S. et al. Strongly polarized quantum-dot-like light emitters embedded in GaAs/GaNAs core/shell nanowires. Nanoscale 8, 15939–15947 (2016).
pubmed: 27537077
doi: 10.1039/C6NR05168E
Grönqvist, J. et al. Strain in semiconductor core-shell nanowires. J. Appl. Phys. 106, 053508 (2009).
doi: 10.1063/1.3207838
Ferrand, D. & Cibert, J. Strain in crystalline core-shell nanowires. EPJ Appl. Phys. 67, 30403 (2014).
doi: 10.1051/epjap/2014140156
Boxberg, F., Søndergaard, N. & Xu, H. Q. Photovoltaics with piezoelectric core-shell nanowires. Nano Lett. 10, 1108–1112 (2010).
pubmed: 20192232
doi: 10.1021/nl9040934
Heiss, M. et al. Self-assembled quantum dots in a nanowire system for quantum photonics. Nat. Mater. 12, 439–444 (2013).
pubmed: 23377293
doi: 10.1038/nmat3557
Klangtakai, P. et al. Post-growth thermal annealing of high N-content GaAsN by MOVPE and its effect on strain relaxation. J. Cryst. Growth 298, 140–144 (2007).
doi: 10.1016/j.jcrysgro.2006.10.111