Complex Impedance Analyses of Li doped ZnO Electrolyte Materials.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
19 May 2020
Historique:
received: 01 10 2019
accepted: 21 04 2020
entrez: 20 5 2020
pubmed: 20 5 2020
medline: 20 5 2020
Statut: epublish

Résumé

The recent studies indicate that internal point defects in solid electrolytes modify the electronic and ionic conductivity and relaxation mechanism of solid oxide fuel cells. We focused on synthesis of Lithium (Li) doped Zn

Identifiants

pubmed: 32427919
doi: 10.1038/s41598-020-65075-0
pii: 10.1038/s41598-020-65075-0
pmc: PMC7237472
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

8228

Références

Yamazoe, N., Sakai, G. & Shimanoe, K. Oxide semiconductor gas sensors. Catalysis Surveys from Asia 7(1), 63–75 (2003).
doi: 10.1023/A:1023436725457
Fine, G. F., Cavanagh, L. M., Afonja, A. & Binions, R. Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring. Sensors 10, 5469–5502 (2010).
doi: 10.3390/s100605469
Choi, K. J. & Jang, H. W. J. One-Dimensional Oxide Nanostructures as Gas-Sensing Materials: Review and Issues. Sensors 10, 4083–4099 (2010).
doi: 10.3390/s100404083
Ojha, S., Das, A. S., Roy, M. & Bhattacharya, S. Temperature and frequency response of conductivity in Ag2S doped chalcogenide glassy semiconductor. Physica B: Condensed Matter 538, 191–198 (2018).
doi: 10.1016/j.physb.2018.03.043
Das, A. S. et al. Ac conductivity of transition metal oxide doped glassy nanocomposite systems: temperature and frequency dependency. Mater. Res. Express 5, 095201 (2018).
doi: 10.1088/2053-1591/aad43e
Das, A. S., Roy, M., Roy, D., Bhattacharya, S. & Nambissan, P. M. G. Identification of defects in the transition metal oxide-doped glass nanocomposite xV2O5–(1-x)(0.05MoO3–0.95ZnO) using positron annihilation spectroscopy and other techniques. Journal of Non-Crystalline Solids 482, 52–62 (2018).
doi: 10.1016/j.jnoncrysol.2017.12.020
Fan, L., Ma, Y., Wang, X., Singh, M. & Zhu, B. Understanding the electrochemical mechanism of the core–shell ceria–LiZnO nanocomposite in a low temperature solid oxide fuel cell. J Mater Chem A 2, 5399 (2014).
doi: 10.1039/c3ta14098a
Lutkenhaus, J. L. & Hammond, P. T. Electrochemically enabled polyelectrolyte multilayer devices: from fuel cells to sensors. Soft Matter 3, 804–816 (2007).
doi: 10.1039/b701203a
Shawuti, S., Can, M. M., Gülgün, M. A. & Fırat, T. Grain Size Dependent Comparison of ZnO and ZnGa2O4 Semiconductors by Impedance Spectrometry. Electrochimica Acta 145, 132–138 (2014).
doi: 10.1016/j.electacta.2014.08.084
Shawuti, S. & Gülgün, M. A. Solid oxide carbonate composite fuel cells: Size effect on percolation. International Journal of Hydrogen Energy 41(44), 20343–20349 (2016).
doi: 10.1016/j.ijhydene.2016.07.208
Qiao, Z. et al. Electrochemical and electrical properties of doped CeO2-ZnO composite for low-temperature solid oxide fuel cell applications. Journal of Power Sources 392, 33–40 (2018).
doi: 10.1016/j.jpowsour.2018.04.096
Xia, C. et al. Study on Zinc Oxide-Based Electrolytes in Low-Temperature Solid Oxide Fuel Cells. Materials 11, 40 (2018).
doi: 10.3390/ma11010040
Xia, C. et al. Shaping triple-conducting semiconductor BaCo0.4Fe0.4Zr0.1Y0.1O3-δ into an electrolyte for low-temperature solid oxide fuel cells. Nature Communications 10, 1707 (2019).
doi: 10.1038/s41467-019-09532-z
Kreuer, K. D. et al. Proton conducting alkaline earth zirconates and titanates for high drain electrochemical applications. Solid State Ionics 145, 295–306 (2001).
doi: 10.1016/S0167-2738(01)00953-5
Shawuti, S., Can, M. M., Gülgün, M. A., Kaneko, S. & Endo, T. Influence of grain boundary interface on ionic conduction of (Zn1-x,Cox)O. Composites Part B: Engineering 147, 252–258 (2018).
doi: 10.1016/j.compositesb.2017.04.020
Li, Y., Rui, Z., Xia, C., Anderson, M. & Lin, Y. S. Performance of ionic-conducting ceramic/carbonate composite materialas solid oxide fuel cell electrolyte and CO2 permeation membrane. Catalysis Today 148, 303–309 (2009).
doi: 10.1016/j.cattod.2009.08.009
Thangadurai, V. & Weppner, W. Recent progress in solid oxide and lithium ion conducting electrolytes research. Ionics 12(1), 81–93. (2006).
doi: 10.1007/s11581-006-0013-7
Wu, J. et al. A novel core–shell nanocomposite electrolyte for low temperature fuel cells. Journal of Power Sources 201, 164–168 (2012).
doi: 10.1016/j.jpowsour.2011.10.084
Accardo, G., Ferone, C. & Cioffi, R. Influence of Lithium on the Sintering Behavior and Electrical Properties of Ce0.8Gd0.2O1.9 for Intermediate Temperature Solid Oxide Fuel Cells. Energy Technol 4, 409–416 (2016).
doi: 10.1002/ente.201500275
Xia, C. et al. Semiconductor electrolyte for low-operating-temperature solid oxide fuel cell: Li-doped ZnO. International Journal of Hydrogen Energy 43, 12825–12834 (2018).
doi: 10.1016/j.ijhydene.2018.04.121
Yi, J. B. et al. Ferromagnetism in Dilute Magnetic Semiconductors through Defect Engineering: Li-Doped ZnO. Phys Rev Lett 104, 137201 (2010).
doi: 10.1103/PhysRevLett.104.137201
Zeng, Y.-J. et al. Realization of p-type ZnO films via monodoping of Li acceptor. Journal of Crystal Growth 283, 180–184 (2005).
doi: 10.1016/j.jcrysgro.2005.05.071
Lu, J. G. et al. Control of - and -type conductivities in Lidoped ZnO thin films. Applied Physics Letters 89, 112113 (2006).
doi: 10.1063/1.2354034
Raza, Rizwan, Zhu, Bin, Rafique, Asia, Naqvi, MuhammadRaza & Lund, Peter Functional ceria-based nanocomposites for advanced low-temperature (300–600 °C) solid oxide fuel cell: A comprehensive review. Materials Today. Energy 15, 1003732 (2020).
Acharya A, Bhattacharya K, Ghosh CK, Bhattacharya S, Microstructures and Charge Carrier Transport of Some Li2O doped Glassy Ceramics, Materials Letters, (2020) in press.
Bhattacharya, S., Acharya, A., Biswas, D., Das, A. S. & Singh, L. S. Conductivity spectra of lithium ion conducting glassy ceramics. Physica B: Condensed Matter 546, 10–14 (2018).
doi: 10.1016/j.physb.2018.07.021
Bhattacharya, S., Acharya, A., Das, A. S., Bhattacharya, K. & Ghosh, C. K. Lithium ion conductivity in Li2OeP2O5-ZnO glass-ceramics. Journal of Alloys and Compounds 786, 707–716 (2019).
doi: 10.1016/j.jallcom.2019.01.284
Rodriguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55 (1993).
doi: 10.1016/0921-4526(93)90108-I
Zak, A. K., Aziz, N. S. A., Hashim, A. M. & Kordi, F. XPS and UV–vis studies of Ga-doped zinc oxide nanoparticles synthesized by gelatin-based sol-gel approach. Ceramics International 42(12), 13605–13611 (2016).
doi: 10.1016/j.ceramint.2016.05.155
Shi, L., Tan, Y. S. & Tsubaki, N. A Solid-State Combustion Method towards Metallic Cu–ZnO Catalyst without Further Reduction and its Application to Low-Temperature Methanol Synthesis. Chem Cat Chem 4, 863–871 (2012).
Jayakumar, O. D., Gopalakrishnan, I. K. & Kulshreshtha, S. K. Surfactant-Assisted Synthesis of Co- and Li-Doped ZnO Nanocrystalline Samples Showing Room-Temperature Ferromagnetism. Adv Mater 18, 1857–1860 (2006).
doi: 10.1002/adma.200502415
Singhal, R. K. et al. Electronic and magnetic properties of Co-doped ZnO diluted magnetic semiconductor. Journal of Alloys and Compounds 496, 324–330 (2010).
doi: 10.1016/j.jallcom.2010.02.005
Kumar, V., Kumari, S., Kumar, P., Kar, M. & Kumar, L. Structural analysis by rietveld method and its correlation with optical properties of nanocrystalline zinc oxide. Adv Mater Lett 6(2), 139–147 (2015).
doi: 10.5185/amlett.2015.5632
Wang, B., Tang, L., Qi, J., Du, H. & Zhang, Z. Synthesis and characteristics of Li-doped ZnO powders for p-type ZnO. Journal of Alloys and Compounds 503, 436–438 (2010).
doi: 10.1016/j.jallcom.2010.05.028
Hjiri, M., Aida, M. S., Lemine, O. M. & El Mir, L. Study of defects in Li-doped ZnO thin films. Materials Science in Semiconductor Processing 89, 149–153 (2019).
doi: 10.1016/j.mssp.2018.09.010
Srinivasan, G., Kumar, R. T. R. & Kumar, J. Li doped and undoped ZnO nanocrystalline thin films: a comparative study of structural and optical properties. J Sol-Gel Sci Technol 43, 171–177 (2007).
doi: 10.1007/s10971-007-1574-2
Awan, S. U., Hasanain, S. K., Bertino, M. F. & Jaffari, G. H. Ferromagnetism in Li doped ZnO nanoparticles: The role of interstitial Li. J Appl Phys 112, 103924 (2012).
doi: 10.1063/1.4767364
Dupin, J. C., Gonbeau, D., Vinatier, P. & Levasseur, A. Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys Chem Chem Phys 2, 1319–1324 (2000).
doi: 10.1039/a908800h

Auteurs

Shalima Shawuti (S)

Faculty of Engineering and Natural Science, Sabancı University, Tuzla, Istanbul, Turkey.

Atta Ur Rehman Sherwani (AUR)

Renewable Energy and Oxide Hybrid Systems Laboratory, Department of Physics, Faculty of Science, Istanbul University, Vezneciler, Istanbul, Turkey.

Musa Mutlu Can (MM)

Renewable Energy and Oxide Hybrid Systems Laboratory, Department of Physics, Faculty of Science, Istanbul University, Vezneciler, Istanbul, Turkey. musa.can@istanbul.edu.tr.

Mehmet Ali Gülgün (MA)

Faculty of Engineering and Natural Science, Sabancı University, Tuzla, Istanbul, Turkey.

Classifications MeSH