Continuously-tunable light-matter coupling in optical microcavities with 2D semiconductors.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
19 May 2020
Historique:
received: 04 11 2019
accepted: 26 12 2019
entrez: 20 5 2020
pubmed: 20 5 2020
medline: 20 5 2020
Statut: epublish

Résumé

A theoretical variation between the two distinct light-matter coupling regimes, namely weak and strong coupling, becomes uniquely feasible in open optical Fabry-Pérot microcavities with low mode volume, as discussed here. In combination with monolayers of transition-metal dichalcogenides (TMDCs) such as WS

Identifiants

pubmed: 32427933
doi: 10.1038/s41598-020-64909-1
pii: 10.1038/s41598-020-64909-1
pmc: PMC7237431
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

8303

Références

Yamamoto, Y. & Imamoglu A. Mesoscopic Quantum Optics. (John Wiley & Sons, 1999).
Vahala, K. Optical microcavities. (World Scientific, 2007).
Kavokin, A. V., Baumberg, J. J., Malpuech, G. & Laussy, F. P. Microcavities. (ed. 2nd) (Oxford University Press, 2017).
Purcell, E. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69(11–12), 674–674 (1946).
Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314 (1992).
pubmed: 10046787 doi: 10.1103/PhysRevLett.69.3314
Deng, H., Haug, H. & Yamamoto, Y. Exciton-polariton Bose-Einstein condensation. Rev. Mod. Phys. 82, 1489 (2010).
doi: 10.1103/RevModPhys.82.1489
Yamamoto, Y., Tassone, F. & Cao, H. Semiconductor Cavity Quantum Electrodynamics. (Springer-Verlag, 2000).
Vahala, K. Optical microcavities. Nature 424, 839 (2003).
pubmed: 12917698 doi: 10.1038/nature01939
Reitzenstein, S. & Forchel, A. Quantum dot micropillars. J. Phys. D: Appl. Phys. 43, 033001 (2010).
doi: 10.1088/0022-3727/43/3/033001
Sanvitto, D. & Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 15, 1061 (2016).
pubmed: 27429208 doi: 10.1038/nmat4668
Deng, H., Weihs, G., Santori, C., Bloch, J. & Yamamoto, Y. Condensation of semiconductor microcavity exciton polaritons. Science 298, 199 (2002).
pubmed: 12364801 doi: 10.1126/science.1074464
Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).
pubmed: 17006506 doi: 10.1038/nature05131
Schneider, C. et al. An electrically pumped polariton laser. Nature 497, 348–352 (2013).
pubmed: 23676752 doi: 10.1038/nature12036
Bhattacharya, P. et al. Solid State Electrically Injected Exciton-Polariton Laser. Phys. Rev. Lett. 110, 206403 (2013).
pubmed: 25167434 doi: 10.1103/PhysRevLett.110.206403
Plumhof, J. D., Stoeferle, T., Mai, L., Scherf, U. & Mahrt, R. Room temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer. Nat. Mater. 13, 328–329 (2014).
doi: 10.1038/nmat3825
Daskalakis, K. S., a Maier, S., Murray, R. & Kéna-Cohen, S. Nonlinear interactions in an organic polariton condensate. Nat. Mater. 13, 271–8 (2014).
pubmed: 24509602 doi: 10.1038/nmat3874 pmcid: 24509602
Christopoulos, S. et al. Room-Temperature Polariton Lasing in Semiconductor Microcavities. Phys. Rev. Lett. 98, 126405 (2007).
pubmed: 17501142 doi: 10.1103/PhysRevLett.98.126405
Bhattacharya, P. et al. Room Temperature Electrically Injected Polariton Laser. Phys. Rev. Lett. 112, 236802 (2014).
pubmed: 24972222 doi: 10.1103/PhysRevLett.112.236802
Liu, X. et al. Strong light–matter coupling in two-dimensional atomic crystals. Nat. Phot. 9, 30–34, https://doi.org/10.1038/nphoton.2014.304 (2014).
doi: 10.1038/nphoton.2014.304
Flatten, L. C. et al. Room-temperature exciton-polaritons with two-dimensional WS
pubmed: 27640988 pmcid: 5027543 doi: 10.1038/srep33134
Wang, S. et al. Coherent Coupling of WS
pubmed: 27266674 doi: 10.1021/acs.nanolett.6b01475
Lundt, N. et al. Observation of macroscopic valley-polarized monolayer exciton-polaritons at room temperature. Phys. Rev. B 96, 241403 (2017).
doi: 10.1103/PhysRevB.96.241403
Sun, Z. et al. Optical control of room-temperature valley polaritons. Nat. Phot. 11, 491–496 (2017).
doi: 10.1038/nphoton.2017.121
Zhang, L., Gogna, R., Burg, W., Tutuc, E. & Deng, H. Photonic-crystal exciton-polaritons in monolayer semiconductors. Nat. Comm. 9, 713 (2018).
doi: 10.1038/s41467-018-03188-x
Hertzog, M., Wang, M., Mony, J. & Börjesson, K. Strong light-matter interactions. A new direction within chemistry. Chem. Soc. Rev. 48, 937–961 (2019).
pubmed: 30662987 pmcid: 6365945 doi: 10.1039/C8CS00193F
Wang, G. et al. In-Plane Propagation of Light in Transition Metal Dichalcogenide Monolayers: Optical Selection Rules. Phys. Rev. Lett. 119, 047401 (2017).
pubmed: 29341750 doi: 10.1103/PhysRevLett.119.047401
Glazov, M. M. et al. Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides. Phys. Rev. B 89, 201302 (2014).
doi: 10.1103/PhysRevB.89.201302
Rodriguez, S. R.-K. Classical and quantum distinctions between weak and strong coupling. Eur. J. Phys. 37, 25802 (2016).
doi: 10.1088/0143-0807/37/2/025802
Novotny, L. Strong coupling, energy splitting, and level crossings: A classical perspective. Am. Jour. of Phys. 78, 1199 (2010).
doi: 10.1119/1.3471177
El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11 (2018).
doi: 10.1038/nphys4323
Heiss, W. D. The physics of exceptional points. J. Phys. A: Math. Theor. 45, 444016 (2012).
doi: 10.1088/1751-8113/45/44/444016
Peng, B. et al. Chiral modes and directional lasing at exceptional points. PNAS 113, 6845 (2016).
pubmed: 27274059 doi: 10.1073/pnas.1603318113
Xu, H., Mason, D., Jiang, L. & Harris, J. G. E. Topological energy transfer in an optomechanical system with exceptional points. Nature 537, 80 (2016).
pubmed: 27454555 doi: 10.1038/nature18604
Chen, W. et al. Exceptional points enhance sensing in an optical microcavity. Nature 548, 192 (2017).
pubmed: 28796206 doi: 10.1038/nature23281
Chakraborty, B. et al. Control of Strong Light–Matter Interaction in Monolayer WS
pubmed: 30160968 doi: 10.1021/acs.nanolett.8b02932
Liu, X. et al. Control of Coherently Coupled Exciton Polaritons in Monolayer Tungsten Disulphide. Phys. Rev. Lett. 119, 27403 (2017).
doi: 10.1103/PhysRevLett.119.027403
Schwartz, T., Hutchison, J. A., Genet, C. & Ebbesen, T. W. Reversible Switching of Ultrastrong Light-Molecule Coupling. Phys. Rev. Lett. 106, 196405 (2011).
pubmed: 21668181 doi: 10.1103/PhysRevLett.106.196405
Wang, S. et al. Quantum Yield of Polariton Emission from Hybrid Light-Matter States. J. Phys. Chem. Lett. 5, 1433–1439 (2014).
pubmed: 26269990 doi: 10.1021/jz5004439
Gao, W., Li, X., Bamba, M. & Kono, J. Continuous transition between weak and ultrastrong coupling through exceptional points in carbon nanotube microcavity exciton–polaritons. Nat. Phot. 12, 362–367 (2018).
doi: 10.1038/s41566-018-0157-9
Malitson, I. H. Interspecimen Comparison of the Refractive Index of Fused Silica. J. Opt. Soc. Am. 55, 1205 (1965).
doi: 10.1364/JOSA.55.001205
Luke, K. et al. Broadband mid-infrared frequency comb generation in a Si
pubmed: 26512459 doi: 10.1364/OL.40.004823
Li, Y. et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS
doi: 10.1103/PhysRevB.90.205422
Weismann, M. & Panoiu, N. C. Theoretical and computational analysis of second- and third-harmonic generation in periodically patterned graphene and transition-metal dichalcogenide monolayers. Phys. Rev. B 94 (2016).
Girault, P. et al. Integrated polymer mirco-ring resonators for optical sensing applications. J. App. Phys. 117, 104504 (2015).
doi: 10.1063/1.4914308
Sultanova, N., Kasarova, S. & Nikolov, L. Dispersion Properties of Optical Polymers. Acta Phys. Pol. A 116, 585 (2009).
doi: 10.12693/APhysPolA.116.585
Kockum, A. F., Miranowicz, A., De Liberato, A., Savasta, S. & Nori, F. Ultrastrong coupling between light and matter. Nat. Rev. Phys. 1, 19–40 (2019).
doi: 10.1038/s42254-018-0006-2
Forn-Diaz, P., Lamata, L., Rico, E., Kono, J. & Solano, E. Ultrastrong coupling regimes of light-matter interaction. Rev. Mod. Phys. 91, 025005 (2019).
doi: 10.1103/RevModPhys.91.025005
Barachati, F. et al. Tunable Third-Harmonic Generation from Polaritons in the Ultrastrong Coupling Regime. ACS Photonics 5, 119–125 (2018).
doi: 10.1021/acsphotonics.7b00305
Eizner, E., Brodeur, J., Barachati, F., Sridharan, A. & Kéna-Cohen, S. Organic Photodiodes with an Extended Responsivity Using Ultrastrong Light-Matter Coupling. ACS Photonics 5, 2921–2927 (2018).
doi: 10.1021/acsphotonics.8b00254
Genco, A. et al. Bright Polariton Coumarin-Based OLEDs Operating in the Ultrastrong Coupling Regime. Adv. Opt. Mater. 6, 1–6 (2018).
doi: 10.1002/adom.201800364

Auteurs

Franziska Wall (F)

Faculty of Physics and Materials Sciences Center, Philipps-Universität Marburg, D-35032, Marburg, Germany.

Oliver Mey (O)

Faculty of Physics and Materials Sciences Center, Philipps-Universität Marburg, D-35032, Marburg, Germany.

Lorenz Maximilian Schneider (LM)

Faculty of Physics and Materials Sciences Center, Philipps-Universität Marburg, D-35032, Marburg, Germany.

Arash Rahimi-Iman (A)

Faculty of Physics and Materials Sciences Center, Philipps-Universität Marburg, D-35032, Marburg, Germany. a.r-i@physik.uni-marburg.de.

Classifications MeSH