Sulfonamides-induced oxidative stress in freshwater microalga Chlorella vulgaris: Evaluation of growth, photosynthesis, antioxidants, ultrastructure, and nucleic acids.
Anti-Bacterial Agents
/ pharmacology
Catalase
/ genetics
Chlorella vulgaris
/ drug effects
Chlorophyll
/ metabolism
Fresh Water
/ chemistry
Glutathione Reductase
/ genetics
Malondialdehyde
/ metabolism
Microalgae
/ drug effects
Oxidative Stress
/ drug effects
Photosynthesis
/ drug effects
Reactive Oxygen Species
/ metabolism
Sulfonamides
/ pharmacology
Superoxide Dismutase
/ genetics
Water Pollutants
/ pharmacology
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
19 05 2020
19 05 2020
Historique:
received:
22
12
2019
accepted:
27
04
2020
entrez:
20
5
2020
pubmed:
20
5
2020
medline:
18
12
2020
Statut:
epublish
Résumé
Sulfadiazine (SD), sulfamerazine (SM1), and sulfamethazine (SM2) are widely used and disorderly discharged into surface water, causing contamination of lakes and rivers. However, microalgae are regard as a potential resource to alleviate and degrade antibiotic pollution. The physiological changes of Chlorella vulgaris in the presence of three sulfonamides (SAs) with varying numbers of -CH
Identifiants
pubmed: 32427937
doi: 10.1038/s41598-020-65219-2
pii: 10.1038/s41598-020-65219-2
pmc: PMC7237458
doi:
Substances chimiques
Anti-Bacterial Agents
0
Reactive Oxygen Species
0
Sulfonamides
0
Water Pollutants
0
Chlorophyll
1406-65-1
Malondialdehyde
4Y8F71G49Q
Catalase
EC 1.11.1.6
Superoxide Dismutase
EC 1.15.1.1
Glutathione Reductase
EC 1.8.1.7
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
8243Références
Bai, X. & Acharya, K. Removal of trimethoprim, sulfamethoxazole, and triclosan by the green alga Nannochloris sp. J. Hazard. Mater. 315, 70–75 (2016).
pubmed: 27179202
doi: 10.1016/j.jhazmat.2016.04.067
Isidori, M., Lavorgna, M., Nardelli, A., Pascarella, L. & Parrella, A. Toxic and genotoxic evaluation of six antibiotics on non-target organisms. Sci. Total Environ. 346, 87–98 (2005).
pubmed: 15993685
doi: 10.1016/j.scitotenv.2004.11.017
Xiong, J. Q., Kurade, M. B., Kim, J. R., Roh, H. S. & Jeon, B. H. Ciprofloxacin toxicity and its co-metabolic removal by a freshwater microalga Chlamydomonas mexicana. J. Hazard. Mater. 323, 212–219 (2017).
pubmed: 27180206
doi: 10.1016/j.jhazmat.2016.04.073
Halling-Sørensen, B. et al. Occurrence, fate and effects of pharmaceutical substances in the environment–a review. Chemosphere 36, 357–393 (1998).
pubmed: 9569937
doi: 10.1016/S0045-6535(97)00354-8
Xin, Y. et al. Toxicity evaluation of pharmaceutical wastewaters using the alga Scenedesmus obliquus and the bacterium Vibrio fischeri. J. Hazard. Mater. 266, 68–74 (2014).
doi: 10.1016/j.jhazmat.2013.12.012
Coogan, M. A., Edziyie, R. E., Point, T. W. L. & Venables, B. J. Algal bioaccumulation of triclocarban, triclosan, and methyl-triclosan in a North Texas wastewater treatment plant receiving stream. Chemosphere 67, 1911–1918 (2007).
pubmed: 17275881
doi: 10.1016/j.chemosphere.2006.12.027
Xiong, J. Q. et al. Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate. Bioresour. Technol. 205, 183–190 (2016).
pubmed: 26826958
doi: 10.1016/j.biortech.2016.01.038
pmcid: 26826958
Gonzalez-Barreiro, O., Rioboo, C., Herrero, C. & Cid, A. Removal of triazine herbicides from freshwater systems using photosynthetic microorganisms. Environ. Pollut. 144, 266–271 (2006).
pubmed: 16488522
doi: 10.1016/j.envpol.2005.12.014
Ji, M. K. et al. Biodegradation of bisphenol A by the freshwater microalgae Chlamydomonas mexicana and Chlorella vulgaris. Ecol. Eng. 73, 260–269 (2014).
doi: 10.1016/j.ecoleng.2014.09.070
Zhou, G. J., Peng, F. Q., Yang, B. & Ying, G. G. Cellular responses and bioremoval of nonylphenol and octylphenol in the freshwater green microalga Scenedesmus obliquus. Ecotox. Environ. Safe. 87, 10–16 (2013).
doi: 10.1016/j.ecoenv.2012.10.002
Hom-Diaz, A. et al. Microalgae cultivation on wastewater digestate: β-estradiol and 17α-ethynylestradiol degradation and transformation products identification. J. Environ. Manage. 155, 106–113 (2015).
pubmed: 25785785
doi: 10.1016/j.jenvman.2015.03.003
pmcid: 25785785
Maes, H. M., Maletz, S. X., Ratte, H. T., Hollender, J. & Schaeffer, A. Uptake, elimination, and biotransformation of 17alpha-ethinylestradiol by the freshwater alga Desmodesmus subspicatus. Environ. Sci. Technol. 48, 12354–12361 (2014).
pubmed: 25238549
doi: 10.1021/es503574z
pmcid: 25238549
Chen, J., Zheng, F. & Guo, R. Algal feedback and removal efficiency in a sequencing batch reactor algae process (SBAR) to treat the antibiotic cefradine. PLoS One 10, e0133273 (2015).
pubmed: 26177093
pmcid: 4503666
doi: 10.1371/journal.pone.0133273
Cheng, J., Qiu, H., Chang, Z., Jiang, Z. & Yin, W. The effect of cadmium on the growth and antioxidant response for freshwater algae Chlorella vulgaris. SpringerPlus 5, 1290 (2016).
pubmed: 27652004
pmcid: 5017993
doi: 10.1186/s40064-016-2963-1
Dauda, S., Chia, M. A. & Bako, S. P. Toxicity of titanium dioxide nanoparticles to Chlorella vulgaris Beyerinck (Beijerinck) 1890 (Trebouxiophyceae, Chlorophyta) under changing nitrogen conditions. Aquat. Toxicol. 187, 108 (2017).
pubmed: 28410471
doi: 10.1016/j.aquatox.2017.03.020
pmcid: 28410471
Xiong, J. Q. et al. Biodegradation and metabolic fate of levofloxacin via a freshwater green alga, Scenedesmus obliquus in synthetic saline wastewater. Algal Res. 25, 54–61 (2017).
doi: 10.1016/j.algal.2017.04.012
Xiong, J. Q., Kurade, M. B. & Jeon, B. H. Biodegradation of levofloxacin by an acclimated freshwater microalga, Chlorella vulgaris. Chem. Eng. J. 313, 1251–1257 (2017).
doi: 10.1016/j.cej.2016.11.017
Misra, A. N., Misra, M. & Singh, R. Chlorophyll fluorescence in plant biology. (2012). Available at, http://www.intechopen.com/books/biophysics/chlorophyll-fluorescence-in-plant-biology
Beasley, A., Belanger, S. E., Brill, J. L. & Otter, R. R. Evaluation and comparison of the relationship between NOEC and EC
pubmed: 26033640
doi: 10.1002/etc.3086
pmcid: 26033640
Eguchi, K. et al. Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae. Chemosphere 57, 1733–1738 (2004).
pubmed: 15519420
doi: 10.1016/j.chemosphere.2004.07.017
pmcid: 15519420
Białk-Bielińska, A. et al. Ecotoxicity evaluation of selected sulfonamides. Chemosphere 85, 928–933 (2011).
pubmed: 21752420
doi: 10.1016/j.chemosphere.2011.06.058
pmcid: 21752420
Kurade, M. B., Kim, J. R., Govindwar, S. P. & Jeon, B. H. Insights into microalgae mediated biodegradation of diazinon by Chlorella vulgaris: microalgal tolerance to xenobiotic pollutants and metabolism. Algal Res. 20, 126–134 (2016).
doi: 10.1016/j.algal.2016.10.003
Zhao, R. et al. Efficient enzymatic degradation used as pre-stage treatment for norfloxacin removal by activated sludge. Bioproc. Biosyst. Eng. 40, 1261–1270 (2017).
doi: 10.1007/s00449-017-1786-y
Xiao, Y., Huang, Q., Chen, L. & Li, P. Growth and photosynthesis responses of Phaeodactylum tricornutum to dissolved organic matter from salt marsh plant and sediment. J. Environ. Sci. 22, 1239–1245 (2010).
doi: 10.1016/S1001-0742(09)60244-8
Perales-Vela, H. V., Garcia, R. V., Gomez-Juarez, E. A., Salcedo-Alvarez, M. O. & Canizares-Villanueva, R. O. Streptomycin affects the growth and photochemical activity of the alga Chlorella vulgaris. Ecotox. Environ. Safe. 132, 311–317 (2016).
doi: 10.1016/j.ecoenv.2016.06.019
Nie, X., Wang, X., Chen, J., Zitko, V. & An, T. Response of the freshwater alga chlorella vulgaris to trichloroisocyanuric acid and ciprofloxacin. Environ. Toxicol. Chem. 27, 168–173 (2010).
doi: 10.1897/07-028.1
Zhang, L. et al. Salinity-induced cellular cross-talk in carbon partitioning reveals starch-to-lipid biosynthesis switching in low-starch freshwater algae. Bioresour. Technol. 250, 449 (2017).
pubmed: 29197271
doi: 10.1016/j.biortech.2017.11.067
pmcid: 29197271
Kasahara, M. et al. Chloroplast avoidance movement reduces photodamage in plants. Nature 420, 829 (2002).
pubmed: 12490952
doi: 10.1038/nature01213
pmcid: 12490952
Liu, W., Ming, Y., Huang, Z. & Li, P. Impacts of florfenicol on marine diatom Skeletonema costatum through photosynthesis inhibition and oxidative damages. Plant physiol. bioch. 60, 165–170 (2012).
doi: 10.1016/j.plaphy.2012.08.009
Aderemi, A. O. et al. Oxidative stress responses and cellular energy allocation changes in microalgae following exposure to widely used human antibiotics. Aquat. Toxicol. 203, 130–139 (2018).
pubmed: 30125766
doi: 10.1016/j.aquatox.2018.08.008
Sun, X. et al. Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process. Bioresour. Technol. 155, 204–212 (2014).
pubmed: 24457305
doi: 10.1016/j.biortech.2013.12.109
Rosa, M. et al. Soluble sugars–metabolism, sensing and abiotic stress: a complex network in the life of plants. Plant Signal. Behav. 4, 388 (2009).
pubmed: 19816104
pmcid: 2676748
doi: 10.4161/psb.4.5.8294
Sami, F., Yusuf, M., Faizan, M., Faraz, A. & Hayat, S. Role of sugars under abiotic stress. Plant Physiol. Biochem. 109, 54–61 (2016).
pubmed: 27639065
doi: 10.1016/j.plaphy.2016.09.005
Bigorgne, E. et al. Ecotoxicological assessment of TiO
pubmed: 21726923
doi: 10.1016/j.envpol.2011.05.024
Upadhyay, A. K. et al. Augmentation of arsenic enhances lipid yield and defense responses in alga Nannochloropsis sp. Bioresour. Technol. 221, 430–437 (2016).
pubmed: 27665531
doi: 10.1016/j.biortech.2016.09.061
Nie, X. P., Liu, B. Y., Yu, H. J., Liu, W. Q. & Yang, Y. F. Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole exposure to the antioxidant system in Pseudokirchneriella subcapitata. Environ. Pollut. 172, 23–32 (2013).
pubmed: 22982550
doi: 10.1016/j.envpol.2012.08.013
Qian, H. et al. The effect of exogenous nitric oxide on alleviating herbicide damage in Chlorella vulgaris. Aquat. Toxicol. 92, 250–257 (2009).
pubmed: 19297032
doi: 10.1016/j.aquatox.2009.02.008
Li, F. M. et al. Inhibitory effects and oxidative target site of dibutyl phthalate on Karenia brevis. Chemosphere 132, 32–39 (2015).
pubmed: 25770834
doi: 10.1016/j.chemosphere.2015.01.051
Marchi, L. D. et al. The impacts of seawater acidification on Ruditapes philippinarum sensitivity to carbon nanoparticles. Environ. Sci.: Nano. 4, 1692–1704 (2017).
Rai, U. N., Singh, N. K., Upadhyay, A. K. & Verma, S. Chromate tolerance and accumulation in Chlorella vulgaris L.: role of antioxidant enzymes and biochemical changes in detoxification of metals. Bioresour. Technol. 136, 604–609 (2013).
pubmed: 23567737
doi: 10.1016/j.biortech.2013.03.043
pmcid: 23567737
Ding, S. H., Jiang, R., Lu, Q. T., Wen, X. G. & Lu, C. M. Glutathione reductase 2 maintains the function of photosystem II in Arabidopsis under excess light. Biochim. Biophys. Acta. 1857, 665–677 (2016).
pubmed: 26906429
doi: 10.1016/j.bbabio.2016.02.011
pmcid: 26906429
Nemat Alla, M. M. & Hassan, N. M. Changes of antioxidants levels in two maize lines following atrazine treatments. Plant Physiol. Biochem. 44, 202–210 (2006).
pubmed: 16777423
doi: 10.1016/j.plaphy.2006.05.004
pmcid: 16777423
Singh, R., Upadhyay, A. K. & Singh, D. P. Regulation of oxidative stress and mineral nutrient status by selenium in arsenic treated crop plant Oryza sativa. Ecotox. Environ. Safe. 148, 105–113 (2017).
doi: 10.1016/j.ecoenv.2017.10.008
Foyer, C. H., Theodoulou, L. F. & Delrot, S. The functions of inter- and intracellular glutathione transport systems in plants. Trends Plant Sci. 6, 486–492 (2001).
pubmed: 11590068
doi: 10.1016/S1360-1385(01)02086-6
pmcid: 11590068
Apel, K. & Hirt, H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373–399 (2004).
pubmed: 15377225
doi: 10.1146/annurev.arplant.55.031903.141701
pmcid: 15377225
Shao, Y., Wu, R. S. S. & Kong, R. Y. C. Physiological and cytological responses of the marine diatom Skeletonema costatum to 2,4-dichlorophenol. Aquat. Toxicol. 60, 33–41 (2002).
doi: 10.1016/S0166-445X(01)00258-2
Gambonnet, B. et al. Folate distribution during higher plant development. J. Sci. Food Agric. 81, 835–841 (2010).
doi: 10.1002/jsfa.870
Vasseur, P. & Cossu-Leguille, C. Biomarkers and community indices as complementary tools for environmental safety. Environ. Int. 28, 711–717 (2003).
pubmed: 12605919
doi: 10.1016/S0160-4120(02)00116-2
pmcid: 12605919
Zhang, J. W., Fu, D. F. & Wu, J. L. Synthesized oversulfated and acetylated derivatives of polysaccharide extracted from Enteromorpha linza and their potential antioxidant activity. Int. J. Biol. Macromol. 49, 1012–1015 (2011).
pubmed: 21893089
doi: 10.1016/j.ijbiomac.2011.08.023
pmcid: 21893089
Zhang, J. W. & Ma, L. Photodegradation mechanism of sulfadiazine catalyzed by Fe(III), oxalate and algae under UV irradiation. Environ. Technol. 34, 1617–1623 (2013).
pubmed: 24191497
doi: 10.1080/09593330.2013.765915
pmcid: 24191497
Zhang, J. W., Fu, D. F. & Wu, J. L. Photodegradation of norfloxacin in aqueous solution containing algae. J. Environ. Sci. 24, 743–749 (2012).
doi: 10.1016/S1001-0742(11)60814-0
Batista, A. P. S., Pires, F. C. C. & Teixeira, A. C. S. C. Photochemical degradation of sulfadiazine, sulfamerazine and sulfamethazine: relevance of concentration and heterocyclic aromatic groups to degradation kinetics. J. Photochem. Photobiol. A 286, 40–46 (2014).
doi: 10.1016/j.jphotochem.2014.04.022
Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1–61 (1979).
Pan, S., Yan, N., Zhang, Y. & Rittmann, B. E. UV photolysis for relieved inhibition of sulfadiazine (SD) to biomass growth. Bioproc. Biosyst. Eng. 38, 911–915 (2015).
doi: 10.1007/s00449-014-1335-x
OECD Test No. 201: freshwater alga and cyanobacteria, growth inhibition test paris OECD Guidelines for the Testing of Chemicals, (2006).
USEPA (United States Environmental Protection Agency) Short-term methods for estimating the chronic toxicity of effluents and receiving waters to fresh water organisms (EPA-821-R-02-013), 4th ed., USA Washington DC, (2002).
Salbitani, G. et al. Sulfur Deprivation results in oxidative perturbation in Chlorella sorokiniana (211/8k). 56, 897-905 (2015).
Hillebrand, H., Dürselen, C.-D., Kirchtel, D., Pollingher, U. & Zohary, T. Biovolume calculation for pelaglc and benthic microalgae. J. Phycol. 35, 403–424 (1999).
doi: 10.1046/j.1529-8817.1999.3520403.x
Almeida, A. C., Gomes, T., Langford, K., Thomas, K. V. & Tollefsen, K. E. Oxidative stress potential of the herbicides bifenox and metribuzin in the microalgae Chlamydomonas reinhardtii. Aquat. Toxicol. 210, 117–128 (2019).
pubmed: 30849631
doi: 10.1016/j.aquatox.2019.02.021
pmcid: 30849631
Bradford, M. M. A rapid method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).
pubmed: 942051
doi: 10.1016/0003-2697(76)90527-3
pmcid: 942051
Mccready, R. M., Guggolz, J. & Silviera, V. Determination of starch and amylose in vegetables. Anal. Biochem. 22, 1156–1158 (1950).
Beauchamp, C. & Fridovich, I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44, 276–287 (1971).
pubmed: 4943714
doi: 10.1016/0003-2697(71)90370-8
pmcid: 4943714
Góth, L. A simple method for determination of serum catalase activity and revision of reference range. Clini. Chim. Acta. 196, 143–151 (1991).
doi: 10.1016/0009-8981(91)90067-M
Gutterer, J. M., Dringen, R., Hirrlinger, J. & Hamprecht, B. Purification of glutathione reductase from bovine brain, generation of an antiserum, and immunocytochemical localization of the enzyme in neural cells. J. Neurochem. 73, 1422–1430 (2010).
doi: 10.1046/j.1471-4159.1999.0731422.x
Ohkawa, H., Ohishi, N. & Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351–358 (1979).
pubmed: 36810
doi: 10.1016/0003-2697(79)90738-3
pmcid: 36810
Liu, L. et al. Oxidative stress induces gastric submucosal arteriolar dysfunction in the elderly. World. J. Gastroentero. 19, 9439–9446 (2013).
doi: 10.3748/wjg.v19.i48.9439
Fang, L. C. et al. Characterization of Rhodopseudomonas palustris strain 2C as a potential probiotic. Apmis 120, 743–749 (2012).
pubmed: 22882264
doi: 10.1111/j.1600-0463.2012.02902.x
pmcid: 22882264
Lapaille, M. et al. Atypical subunit composition of the chlorophycean mitochondrial F
pubmed: 20156838
doi: 10.1093/molbev/msq049
pmcid: 20156838
Tice, R. R., Andrews, P. W., Hirai, O. & Singh, N. P. The single cell gel (SCG) assay: an electrophoretic technique for the detection of DNA damage in individual cells. Biol. React. Intermed. IV 283, 157–164 (1991).
D’Avolio, A. et al. Ultra performance liquid chromatography PDA method for determination of tigecycline in human plasma. Ther. Drug. Monit. 35, 853–858 (2013).
pubmed: 24067259
doi: 10.1097/FTD.0b013e31829403b1
Chen, S., Xu, F., Zhang, W., Tang, W. Q. & Wang, L. Q. Research progress in pollution situation and environmental behavior of sulfonamides. Environ. Chem. 38, 38–37 (2019).