Sulfonamides-induced oxidative stress in freshwater microalga Chlorella vulgaris: Evaluation of growth, photosynthesis, antioxidants, ultrastructure, and nucleic acids.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
19 05 2020
Historique:
received: 22 12 2019
accepted: 27 04 2020
entrez: 20 5 2020
pubmed: 20 5 2020
medline: 18 12 2020
Statut: epublish

Résumé

Sulfadiazine (SD), sulfamerazine (SM1), and sulfamethazine (SM2) are widely used and disorderly discharged into surface water, causing contamination of lakes and rivers. However, microalgae are regard as a potential resource to alleviate and degrade antibiotic pollution. The physiological changes of Chlorella vulgaris in the presence of three sulfonamides (SAs) with varying numbers of -CH

Identifiants

pubmed: 32427937
doi: 10.1038/s41598-020-65219-2
pii: 10.1038/s41598-020-65219-2
pmc: PMC7237458
doi:

Substances chimiques

Anti-Bacterial Agents 0
Reactive Oxygen Species 0
Sulfonamides 0
Water Pollutants 0
Chlorophyll 1406-65-1
Malondialdehyde 4Y8F71G49Q
Catalase EC 1.11.1.6
Superoxide Dismutase EC 1.15.1.1
Glutathione Reductase EC 1.8.1.7

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

8243

Références

Bai, X. & Acharya, K. Removal of trimethoprim, sulfamethoxazole, and triclosan by the green alga Nannochloris sp. J. Hazard. Mater. 315, 70–75 (2016).
pubmed: 27179202 doi: 10.1016/j.jhazmat.2016.04.067
Isidori, M., Lavorgna, M., Nardelli, A., Pascarella, L. & Parrella, A. Toxic and genotoxic evaluation of six antibiotics on non-target organisms. Sci. Total Environ. 346, 87–98 (2005).
pubmed: 15993685 doi: 10.1016/j.scitotenv.2004.11.017
Xiong, J. Q., Kurade, M. B., Kim, J. R., Roh, H. S. & Jeon, B. H. Ciprofloxacin toxicity and its co-metabolic removal by a freshwater microalga Chlamydomonas mexicana. J. Hazard. Mater. 323, 212–219 (2017).
pubmed: 27180206 doi: 10.1016/j.jhazmat.2016.04.073
Halling-Sørensen, B. et al. Occurrence, fate and effects of pharmaceutical substances in the environment–a review. Chemosphere 36, 357–393 (1998).
pubmed: 9569937 doi: 10.1016/S0045-6535(97)00354-8
Xin, Y. et al. Toxicity evaluation of pharmaceutical wastewaters using the alga Scenedesmus obliquus and the bacterium Vibrio fischeri. J. Hazard. Mater. 266, 68–74 (2014).
doi: 10.1016/j.jhazmat.2013.12.012
Coogan, M. A., Edziyie, R. E., Point, T. W. L. & Venables, B. J. Algal bioaccumulation of triclocarban, triclosan, and methyl-triclosan in a North Texas wastewater treatment plant receiving stream. Chemosphere 67, 1911–1918 (2007).
pubmed: 17275881 doi: 10.1016/j.chemosphere.2006.12.027
Xiong, J. Q. et al. Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate. Bioresour. Technol. 205, 183–190 (2016).
pubmed: 26826958 doi: 10.1016/j.biortech.2016.01.038 pmcid: 26826958
Gonzalez-Barreiro, O., Rioboo, C., Herrero, C. & Cid, A. Removal of triazine herbicides from freshwater systems using photosynthetic microorganisms. Environ. Pollut. 144, 266–271 (2006).
pubmed: 16488522 doi: 10.1016/j.envpol.2005.12.014
Ji, M. K. et al. Biodegradation of bisphenol A by the freshwater microalgae Chlamydomonas mexicana and Chlorella vulgaris. Ecol. Eng. 73, 260–269 (2014).
doi: 10.1016/j.ecoleng.2014.09.070
Zhou, G. J., Peng, F. Q., Yang, B. & Ying, G. G. Cellular responses and bioremoval of nonylphenol and octylphenol in the freshwater green microalga Scenedesmus obliquus. Ecotox. Environ. Safe. 87, 10–16 (2013).
doi: 10.1016/j.ecoenv.2012.10.002
Hom-Diaz, A. et al. Microalgae cultivation on wastewater digestate: β-estradiol and 17α-ethynylestradiol degradation and transformation products identification. J. Environ. Manage. 155, 106–113 (2015).
pubmed: 25785785 doi: 10.1016/j.jenvman.2015.03.003 pmcid: 25785785
Maes, H. M., Maletz, S. X., Ratte, H. T., Hollender, J. & Schaeffer, A. Uptake, elimination, and biotransformation of 17alpha-ethinylestradiol by the freshwater alga Desmodesmus subspicatus. Environ. Sci. Technol. 48, 12354–12361 (2014).
pubmed: 25238549 doi: 10.1021/es503574z pmcid: 25238549
Chen, J., Zheng, F. & Guo, R. Algal feedback and removal efficiency in a sequencing batch reactor algae process (SBAR) to treat the antibiotic cefradine. PLoS One 10, e0133273 (2015).
pubmed: 26177093 pmcid: 4503666 doi: 10.1371/journal.pone.0133273
Cheng, J., Qiu, H., Chang, Z., Jiang, Z. & Yin, W. The effect of cadmium on the growth and antioxidant response for freshwater algae Chlorella vulgaris. SpringerPlus 5, 1290 (2016).
pubmed: 27652004 pmcid: 5017993 doi: 10.1186/s40064-016-2963-1
Dauda, S., Chia, M. A. & Bako, S. P. Toxicity of titanium dioxide nanoparticles to Chlorella vulgaris Beyerinck (Beijerinck) 1890 (Trebouxiophyceae, Chlorophyta) under changing nitrogen conditions. Aquat. Toxicol. 187, 108 (2017).
pubmed: 28410471 doi: 10.1016/j.aquatox.2017.03.020 pmcid: 28410471
Xiong, J. Q. et al. Biodegradation and metabolic fate of levofloxacin via a freshwater green alga, Scenedesmus obliquus in synthetic saline wastewater. Algal Res. 25, 54–61 (2017).
doi: 10.1016/j.algal.2017.04.012
Xiong, J. Q., Kurade, M. B. & Jeon, B. H. Biodegradation of levofloxacin by an acclimated freshwater microalga, Chlorella vulgaris. Chem. Eng. J. 313, 1251–1257 (2017).
doi: 10.1016/j.cej.2016.11.017
Misra, A. N., Misra, M. & Singh, R. Chlorophyll fluorescence in plant biology. (2012). Available at, http://www.intechopen.com/books/biophysics/chlorophyll-fluorescence-in-plant-biology
Beasley, A., Belanger, S. E., Brill, J. L. & Otter, R. R. Evaluation and comparison of the relationship between NOEC and EC
pubmed: 26033640 doi: 10.1002/etc.3086 pmcid: 26033640
Eguchi, K. et al. Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae. Chemosphere 57, 1733–1738 (2004).
pubmed: 15519420 doi: 10.1016/j.chemosphere.2004.07.017 pmcid: 15519420
Białk-Bielińska, A. et al. Ecotoxicity evaluation of selected sulfonamides. Chemosphere 85, 928–933 (2011).
pubmed: 21752420 doi: 10.1016/j.chemosphere.2011.06.058 pmcid: 21752420
Kurade, M. B., Kim, J. R., Govindwar, S. P. & Jeon, B. H. Insights into microalgae mediated biodegradation of diazinon by Chlorella vulgaris: microalgal tolerance to xenobiotic pollutants and metabolism. Algal Res. 20, 126–134 (2016).
doi: 10.1016/j.algal.2016.10.003
Zhao, R. et al. Efficient enzymatic degradation used as pre-stage treatment for norfloxacin removal by activated sludge. Bioproc. Biosyst. Eng. 40, 1261–1270 (2017).
doi: 10.1007/s00449-017-1786-y
Xiao, Y., Huang, Q., Chen, L. & Li, P. Growth and photosynthesis responses of Phaeodactylum tricornutum to dissolved organic matter from salt marsh plant and sediment. J. Environ. Sci. 22, 1239–1245 (2010).
doi: 10.1016/S1001-0742(09)60244-8
Perales-Vela, H. V., Garcia, R. V., Gomez-Juarez, E. A., Salcedo-Alvarez, M. O. & Canizares-Villanueva, R. O. Streptomycin affects the growth and photochemical activity of the alga Chlorella vulgaris. Ecotox. Environ. Safe. 132, 311–317 (2016).
doi: 10.1016/j.ecoenv.2016.06.019
Nie, X., Wang, X., Chen, J., Zitko, V. & An, T. Response of the freshwater alga chlorella vulgaris to trichloroisocyanuric acid and ciprofloxacin. Environ. Toxicol. Chem. 27, 168–173 (2010).
doi: 10.1897/07-028.1
Zhang, L. et al. Salinity-induced cellular cross-talk in carbon partitioning reveals starch-to-lipid biosynthesis switching in low-starch freshwater algae. Bioresour. Technol. 250, 449 (2017).
pubmed: 29197271 doi: 10.1016/j.biortech.2017.11.067 pmcid: 29197271
Kasahara, M. et al. Chloroplast avoidance movement reduces photodamage in plants. Nature 420, 829 (2002).
pubmed: 12490952 doi: 10.1038/nature01213 pmcid: 12490952
Liu, W., Ming, Y., Huang, Z. & Li, P. Impacts of florfenicol on marine diatom Skeletonema costatum through photosynthesis inhibition and oxidative damages. Plant physiol. bioch. 60, 165–170 (2012).
doi: 10.1016/j.plaphy.2012.08.009
Aderemi, A. O. et al. Oxidative stress responses and cellular energy allocation changes in microalgae following exposure to widely used human antibiotics. Aquat. Toxicol. 203, 130–139 (2018).
pubmed: 30125766 doi: 10.1016/j.aquatox.2018.08.008
Sun, X. et al. Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process. Bioresour. Technol. 155, 204–212 (2014).
pubmed: 24457305 doi: 10.1016/j.biortech.2013.12.109
Rosa, M. et al. Soluble sugars–metabolism, sensing and abiotic stress: a complex network in the life of plants. Plant Signal. Behav. 4, 388 (2009).
pubmed: 19816104 pmcid: 2676748 doi: 10.4161/psb.4.5.8294
Sami, F., Yusuf, M., Faizan, M., Faraz, A. & Hayat, S. Role of sugars under abiotic stress. Plant Physiol. Biochem. 109, 54–61 (2016).
pubmed: 27639065 doi: 10.1016/j.plaphy.2016.09.005
Bigorgne, E. et al. Ecotoxicological assessment of TiO
pubmed: 21726923 doi: 10.1016/j.envpol.2011.05.024
Upadhyay, A. K. et al. Augmentation of arsenic enhances lipid yield and defense responses in alga Nannochloropsis sp. Bioresour. Technol. 221, 430–437 (2016).
pubmed: 27665531 doi: 10.1016/j.biortech.2016.09.061
Nie, X. P., Liu, B. Y., Yu, H. J., Liu, W. Q. & Yang, Y. F. Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole exposure to the antioxidant system in Pseudokirchneriella subcapitata. Environ. Pollut. 172, 23–32 (2013).
pubmed: 22982550 doi: 10.1016/j.envpol.2012.08.013
Qian, H. et al. The effect of exogenous nitric oxide on alleviating herbicide damage in Chlorella vulgaris. Aquat. Toxicol. 92, 250–257 (2009).
pubmed: 19297032 doi: 10.1016/j.aquatox.2009.02.008
Li, F. M. et al. Inhibitory effects and oxidative target site of dibutyl phthalate on Karenia brevis. Chemosphere 132, 32–39 (2015).
pubmed: 25770834 doi: 10.1016/j.chemosphere.2015.01.051
Marchi, L. D. et al. The impacts of seawater acidification on Ruditapes philippinarum sensitivity to carbon nanoparticles. Environ. Sci.: Nano. 4, 1692–1704 (2017).
Rai, U. N., Singh, N. K., Upadhyay, A. K. & Verma, S. Chromate tolerance and accumulation in Chlorella vulgaris L.: role of antioxidant enzymes and biochemical changes in detoxification of metals. Bioresour. Technol. 136, 604–609 (2013).
pubmed: 23567737 doi: 10.1016/j.biortech.2013.03.043 pmcid: 23567737
Ding, S. H., Jiang, R., Lu, Q. T., Wen, X. G. & Lu, C. M. Glutathione reductase 2 maintains the function of photosystem II in Arabidopsis under excess light. Biochim. Biophys. Acta. 1857, 665–677 (2016).
pubmed: 26906429 doi: 10.1016/j.bbabio.2016.02.011 pmcid: 26906429
Nemat Alla, M. M. & Hassan, N. M. Changes of antioxidants levels in two maize lines following atrazine treatments. Plant Physiol. Biochem. 44, 202–210 (2006).
pubmed: 16777423 doi: 10.1016/j.plaphy.2006.05.004 pmcid: 16777423
Singh, R., Upadhyay, A. K. & Singh, D. P. Regulation of oxidative stress and mineral nutrient status by selenium in arsenic treated crop plant Oryza sativa. Ecotox. Environ. Safe. 148, 105–113 (2017).
doi: 10.1016/j.ecoenv.2017.10.008
Foyer, C. H., Theodoulou, L. F. & Delrot, S. The functions of inter- and intracellular glutathione transport systems in plants. Trends Plant Sci. 6, 486–492 (2001).
pubmed: 11590068 doi: 10.1016/S1360-1385(01)02086-6 pmcid: 11590068
Apel, K. & Hirt, H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373–399 (2004).
pubmed: 15377225 doi: 10.1146/annurev.arplant.55.031903.141701 pmcid: 15377225
Shao, Y., Wu, R. S. S. & Kong, R. Y. C. Physiological and cytological responses of the marine diatom Skeletonema costatum to 2,4-dichlorophenol. Aquat. Toxicol. 60, 33–41 (2002).
doi: 10.1016/S0166-445X(01)00258-2
Gambonnet, B. et al. Folate distribution during higher plant development. J. Sci. Food Agric. 81, 835–841 (2010).
doi: 10.1002/jsfa.870
Vasseur, P. & Cossu-Leguille, C. Biomarkers and community indices as complementary tools for environmental safety. Environ. Int. 28, 711–717 (2003).
pubmed: 12605919 doi: 10.1016/S0160-4120(02)00116-2 pmcid: 12605919
Zhang, J. W., Fu, D. F. & Wu, J. L. Synthesized oversulfated and acetylated derivatives of polysaccharide extracted from Enteromorpha linza and their potential antioxidant activity. Int. J. Biol. Macromol. 49, 1012–1015 (2011).
pubmed: 21893089 doi: 10.1016/j.ijbiomac.2011.08.023 pmcid: 21893089
Zhang, J. W. & Ma, L. Photodegradation mechanism of sulfadiazine catalyzed by Fe(III), oxalate and algae under UV irradiation. Environ. Technol. 34, 1617–1623 (2013).
pubmed: 24191497 doi: 10.1080/09593330.2013.765915 pmcid: 24191497
Zhang, J. W., Fu, D. F. & Wu, J. L. Photodegradation of norfloxacin in aqueous solution containing algae. J. Environ. Sci. 24, 743–749 (2012).
doi: 10.1016/S1001-0742(11)60814-0
Batista, A. P. S., Pires, F. C. C. & Teixeira, A. C. S. C. Photochemical degradation of sulfadiazine, sulfamerazine and sulfamethazine: relevance of concentration and heterocyclic aromatic groups to degradation kinetics. J. Photochem. Photobiol. A 286, 40–46 (2014).
doi: 10.1016/j.jphotochem.2014.04.022
Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1–61 (1979).
Pan, S., Yan, N., Zhang, Y. & Rittmann, B. E. UV photolysis for relieved inhibition of sulfadiazine (SD) to biomass growth. Bioproc. Biosyst. Eng. 38, 911–915 (2015).
doi: 10.1007/s00449-014-1335-x
OECD Test No. 201: freshwater alga and cyanobacteria, growth inhibition test paris OECD Guidelines for the Testing of Chemicals, (2006).
USEPA (United States Environmental Protection Agency) Short-term methods for estimating the chronic toxicity of effluents and receiving waters to fresh water organisms (EPA-821-R-02-013), 4th ed., USA Washington DC, (2002).
Salbitani, G. et al. Sulfur Deprivation results in oxidative perturbation in Chlorella sorokiniana (211/8k). 56, 897-905 (2015).
Hillebrand, H., Dürselen, C.-D., Kirchtel, D., Pollingher, U. & Zohary, T. Biovolume calculation for pelaglc and benthic microalgae. J. Phycol. 35, 403–424 (1999).
doi: 10.1046/j.1529-8817.1999.3520403.x
Almeida, A. C., Gomes, T., Langford, K., Thomas, K. V. & Tollefsen, K. E. Oxidative stress potential of the herbicides bifenox and metribuzin in the microalgae Chlamydomonas reinhardtii. Aquat. Toxicol. 210, 117–128 (2019).
pubmed: 30849631 doi: 10.1016/j.aquatox.2019.02.021 pmcid: 30849631
Bradford, M. M. A rapid method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).
pubmed: 942051 doi: 10.1016/0003-2697(76)90527-3 pmcid: 942051
Mccready, R. M., Guggolz, J. & Silviera, V. Determination of starch and amylose in vegetables. Anal. Biochem. 22, 1156–1158 (1950).
Beauchamp, C. & Fridovich, I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44, 276–287 (1971).
pubmed: 4943714 doi: 10.1016/0003-2697(71)90370-8 pmcid: 4943714
Góth, L. A simple method for determination of serum catalase activity and revision of reference range. Clini. Chim. Acta. 196, 143–151 (1991).
doi: 10.1016/0009-8981(91)90067-M
Gutterer, J. M., Dringen, R., Hirrlinger, J. & Hamprecht, B. Purification of glutathione reductase from bovine brain, generation of an antiserum, and immunocytochemical localization of the enzyme in neural cells. J. Neurochem. 73, 1422–1430 (2010).
doi: 10.1046/j.1471-4159.1999.0731422.x
Ohkawa, H., Ohishi, N. & Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351–358 (1979).
pubmed: 36810 doi: 10.1016/0003-2697(79)90738-3 pmcid: 36810
Liu, L. et al. Oxidative stress induces gastric submucosal arteriolar dysfunction in the elderly. World. J. Gastroentero. 19, 9439–9446 (2013).
doi: 10.3748/wjg.v19.i48.9439
Fang, L. C. et al. Characterization of Rhodopseudomonas palustris strain 2C as a potential probiotic. Apmis 120, 743–749 (2012).
pubmed: 22882264 doi: 10.1111/j.1600-0463.2012.02902.x pmcid: 22882264
Lapaille, M. et al. Atypical subunit composition of the chlorophycean mitochondrial F
pubmed: 20156838 doi: 10.1093/molbev/msq049 pmcid: 20156838
Tice, R. R., Andrews, P. W., Hirai, O. & Singh, N. P. The single cell gel (SCG) assay: an electrophoretic technique for the detection of DNA damage in individual cells. Biol. React. Intermed. IV 283, 157–164 (1991).
D’Avolio, A. et al. Ultra performance liquid chromatography PDA method for determination of tigecycline in human plasma. Ther. Drug. Monit. 35, 853–858 (2013).
pubmed: 24067259 doi: 10.1097/FTD.0b013e31829403b1
Chen, S., Xu, F., Zhang, W., Tang, W. Q. & Wang, L. Q. Research progress in pollution situation and environmental behavior of sulfonamides. Environ. Chem. 38, 38–37 (2019).

Auteurs

Shan Chen (S)

Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.

Liqing Wang (L)

Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.

Wenbo Feng (W)

Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.

Mingzhe Yuan (M)

Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.

Jiayuan Li (J)

Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.

Houtao Xu (H)

School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.

Xiaoyan Zheng (X)

Shanghai Aquatic Environmental Engineering Co., Ltd, Shanghai, 200090, China.

Wei Zhang (W)

Centre for Research on Environmental Ecology and Fish Nutrient of the Ministry of Agriculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China. weizhang@shou.edu.cn.

Articles similaires

Vancomycin-associated DRESS demonstrates delay in AST abnormalities.

Ahmed Hussein, Kateri L Schoettinger, Jourdan Hydol-Smith et al.
1.00
Humans Drug Hypersensitivity Syndrome Vancomycin Female Male
Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Humans Arthroplasty, Replacement, Elbow Prosthesis-Related Infections Debridement Anti-Bacterial Agents
Psoriasis Humans Magnesium Zinc Trace Elements

Classifications MeSH