Clues of in vivo nuclear gene regulation by mitochondrial short non-coding RNAs.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
19 05 2020
19 05 2020
Historique:
received:
04
12
2019
accepted:
22
04
2020
entrez:
20
5
2020
pubmed:
20
5
2020
medline:
7
1
2021
Statut:
epublish
Résumé
Gene expression involves multiple processes, from transcription to translation to the mature, functional peptide, and it is regulated at multiple levels. Small RNA molecules are known to bind RNA messengers affecting their fate in the cytoplasm (a process generically termed 'RNA interference'). Such small regulatory RNAs are well-known to be originated from the nuclear genome, while the role of mitochondrial genome in RNA interference was largely overlooked. However, evidence is growing that mitochondrial DNA does provide the cell a source of interfering RNAs. Small mitochondrial highly transcribed RNAs (smithRNAs) have been proposed to be transcribed from the mitochondrion and predicted to regulate nuclear genes. Here, for the first time, we show in vivo clues of the activity of two smithRNAs in the Manila clam, Ruditapes philippinarum. Moreover, we show that smithRNAs are present and can be annotated in representatives of the three main bilaterian lineages; in some cases, they were already described and assigned to a small RNA category (e.g., piRNAs) given their biogenesis, while in other cases their biogenesis remains unclear. If mitochondria may affect nuclear gene expression through RNA interference, this opens a plethora of new possibilities for them to interact with the nucleus and makes metazoan mitochondrial DNA a much more complex genome than previously thought.
Identifiants
pubmed: 32427953
doi: 10.1038/s41598-020-65084-z
pii: 10.1038/s41598-020-65084-z
pmc: PMC7237437
doi:
Substances chimiques
DNA, Mitochondrial
0
RNA, Untranslated
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
8219Références
Brouwer, I. & Lenstra, T. L. Visualizing transcription: key to understanding gene expression dynamics. Curr. Opin. Chem. Biol. 51, 122–129 (2019).
pubmed: 31284216
doi: 10.1016/j.cbpa.2019.05.031
pmcid: 31284216
Buchberger, E., Reis, M., Lu, T.-H. & Posnien, N. Cloudy with a chance of insights: context dependent gene regulation and implications for evolutionary studies. Genes 10, 492 (2019).
pmcid: 6678813
doi: 10.3390/genes10070492
Kim, S. S. & Lee, S.-J. V. Non-coding RNAs in Caenorhabditis elegans aging. Mol. Cells 42, 379–385 (2019).
pubmed: 31094164
pmcid: 6537654
Larriba, E. & del Mazo, J. Role of non-coding RNAs in the transgenerational epigenetic transmission of the effects of reprotoxicants. Int. J. Mol. Sci. 17, 452 (2016).
pubmed: 27023531
pmcid: 4848908
doi: 10.3390/ijms17040452
Cech, T. R. & Steitz, J. A. The noncoding RNA revolution—trashing old rules to forge new ones. Cell 157, 77–94 (2014).
pubmed: 24679528
doi: 10.1016/j.cell.2014.03.008
pmcid: 24679528
Ghildiyal, M. & Zamore, P. D. Small silencing RNAs: an expanding universe. Nat. Rev. Genet. 10, 94–108 (2009).
pubmed: 19148191
pmcid: 2724769
doi: 10.1038/nrg2504
Fromm, B. et al. A uniform system for the annotation of vertebrate microRNA genes and the evolution of the human microRNAome. Annu. Rev. Genet. 49, 213–242 (2015).
pubmed: 26473382
pmcid: 4743252
doi: 10.1146/annurev-genet-120213-092023
Wessels, H. H. et al. Global identification of functional microRNA-mRNA interactions in Drosophila. Nat Commun. 10, 1626 (2019).
pubmed: 30967537
pmcid: 6456604
doi: 10.1038/s41467-019-09586-z
O’Brien, J., Hayder, H., Zayed, Y. & Peng, C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. 9, 402 (2018).
doi: 10.3389/fendo.2018.00402
Ha, M. & Kim, V. N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15, 509–524 (2014).
pubmed: 25027649
doi: 10.1038/nrm3838
pmcid: 25027649
García-López, J., Brieño-Enríquez, M. A. & del Mazo, J. MicroRNA biogenesis and variability. BioMol Concepts 4, 367–380 (2013).
pubmed: 25436586
doi: 10.1515/bmc-2013-0015
pmcid: 25436586
Ozata, D. M., Gainetdinov, I., Zoch, A., O’Carroll, D. & Zamore, P. D. PIWI-interacting RNAs: small RNAs with big functions. Nat. Rev. Genet. 20, 89–108 (2019).
pubmed: 30446728
doi: 10.1038/s41576-018-0073-3
pmcid: 30446728
Weick, E. M. & Miska, E. A. piRNAs: from biogenesis to function. Development 141, 3458–3471 (2014).
pubmed: 25183868
doi: 10.1242/dev.094037
pmcid: 25183868
Bamezai, S., Rawat, V. P. & Buske, C. Concise review: The Piwi-piRNA axis: pivotal beyond transposon silencing. Stem Cells 30, 2603–2611 (2012).
pubmed: 22996918
doi: 10.1002/stem.1237
pmcid: 22996918
Cloonan, N. Re-thinking miRNA-mRNA interactions: intertwining issues confound target discovery. Bioessays 37, 379–388 (2015).
pubmed: 25683051
pmcid: 4671252
doi: 10.1002/bies.201400191
Bartel, D. P. Metazoan microRNAs. Cell 173, 20–50 (2018).
pubmed: 29570994
pmcid: 6091663
doi: 10.1016/j.cell.2018.03.006
Lee, Y. et al. The role of PACT in the RNA silencing pathway. EMBO J. 25, 522–532 (2006).
pubmed: 16424907
pmcid: 1383527
doi: 10.1038/sj.emboj.7600942
Chendrimada, T. P. et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740–744 (2005).
pubmed: 15973356
pmcid: 2944926
doi: 10.1038/nature03868
Förstemann, K. et al. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol. 3, e236 (2005).
pubmed: 15918770
pmcid: 1141267
doi: 10.1371/journal.pbio.0030236
Jiang, F. et al. Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila. Genes Dev. 19, 1674–1679 (2005).
pubmed: 15985611
pmcid: 1176004
doi: 10.1101/gad.1334005
Saito, K., Ishizuka, A., Siomi, H. & Siomi, M. C. Processing of pre-microRNAs by the Dicer-1-Loquacious complex in Drosophila cells. PLoS Biol. 3, e235 (2005).
pubmed: 15918769
pmcid: 1141268
doi: 10.1371/journal.pbio.0030235
Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).
pubmed: 11201747
doi: 10.1038/35053110
pmcid: 11201747
Grishok, A. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106, 23–34 (2001).
pubmed: 11461699
doi: 10.1016/S0092-8674(01)00431-7
pmcid: 11461699
Hutvágner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838 (2001).
pubmed: 11452083
doi: 10.1126/science.1062961
pmcid: 11452083
Ketting, R. F. et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 15, 2654–2659 (2001).
pubmed: 11641272
pmcid: 312808
doi: 10.1101/gad.927801
Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F. & Hannon, G. J. Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231–235 (2004).
pubmed: 15531879
doi: 10.1038/nature03049
pmcid: 15531879
Gregory, R. I. et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235–240 (2004).
pubmed: 15531877
doi: 10.1038/nature03120
pmcid: 15531877
Han, J. et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 18, 3016–3027 (2004).
pubmed: 15574589
pmcid: 535913
doi: 10.1101/gad.1262504
Landthaler, M., Yalcin, A. & Tuschl, T. The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol. 14, 2162–2167 (2004).
pubmed: 15589161
doi: 10.1016/j.cub.2004.11.001
pmcid: 15589161
Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003).
pubmed: 14508493
doi: 10.1038/nature01957
pmcid: 14508493
Lee, Y., Jeon, K., Lee, J. T., Kim, S. & Kim, V. N. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 21, 4663–4670 (2002).
pubmed: 12198168
pmcid: 126204
doi: 10.1093/emboj/cdf476
Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).
pubmed: 3794896
pmcid: 3794896
doi: 10.1016/j.cell.2009.01.002
Breton, S. et al. A resourceful genome: updating the functional repertoire and evolutionary role of animal mitochondrial DNAs. Trends Genet. 30, 555–564 (2014).
pubmed: 25263762
doi: 10.1016/j.tig.2014.09.002
pmcid: 25263762
Gissi, C. et al. Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity 101, 301–320 (2008).
pubmed: 18612321
doi: 10.1038/hdy.2008.62
pmcid: 18612321
Boore, J. L. Animal mitochondrial genomes. Nucleic Acids Res. 27, 1767–1780 (1999).
pubmed: 10101183
pmcid: 148383
doi: 10.1093/nar/27.8.1767
Mercer, T. R. et al. The human mitochondrial transcriptome. Cell 146, 645–658 (2011).
pubmed: 21854988
pmcid: 3160626
doi: 10.1016/j.cell.2011.06.051
Haussecker, D. et al. Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 16, 673–695 (2010).
pubmed: 20181738
pmcid: 2844617
doi: 10.1261/rna.2000810
Lee, Y. S., Shibata, Y., Malhotra, A. & Dutta, A. A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev. 23, 2639–2649 (2009).
pubmed: 19933153
pmcid: 2779758
doi: 10.1101/gad.1837609
Ro, S. et al. The mitochondrial genome encodes abundant small noncoding RNAs. Cell Res. 23, 759–774 (2013).
pubmed: 23478297
pmcid: 3674384
doi: 10.1038/cr.2013.37
Larriba, E., Rial, E. & del Mazo, J. The landscape of mitochondrial small non-coding RNAs in the PGCs of male mice, spermatogonia, gametes and in zygotes. BMC Genomics 19, 634 (2018).
pubmed: 30153810
pmcid: 6114042
doi: 10.1186/s12864-018-5020-3
Riggs, C. L. et al. Small non-coding RNA expression and vertebrate anoxia tolerance Front. Genet. 9, 230 (2018).
Hill, G. E. Mitonuclear Ecology (Oxford University Press, 2019).
Dong, Y., Yoshitomi, T., Hu, J.-F. & Cui, J. Long noncoding RNAs coordinate functions between mitochondria and the nucleus. Epigenet. Chromatin 10, 41 (2017).
doi: 10.1186/s13072-017-0149-x
Pozzi, A., Plazzi, F., Milani, L., Ghiselli, F. & Passamonti, M. SmithRNAs: could mitochondria “bend” nuclear regulation? Mol. Biol. Evol. 34, 1960–1973 (2017).
pubmed: 28444389
pmcid: 5850712
doi: 10.1093/molbev/msx140
Passamonti, M. & Plazzi, F. Doubly Uniparental Inheritance and beyond: The contribution of the Manila clam Ruditapes philippinarum. J. Zool. Syst. Evol. Res., https://doi.org/10.1111/jzs.12371 (2020).
Gusman, A., Lecomte, S., Stewart, D. T., Passamonti, M. & Breton, S. Pursuing the quest for better understanding the taxonomic distribution of the system of doubly uniparental inheritance of mtDNA. PeerJ 4, e2760 (2016).
pubmed: 27994972
pmcid: 5157197
doi: 10.7717/peerj.2760
Zouros, E. Biparental Inheritance Through Uniparental Transmission: The Doubly Uniparental Inheritance (DUI) of Mitochondrial DNA. Evol. Biol. 40, 1–31 (2013).
doi: 10.1007/s11692-012-9195-2
Pozzi, A. & Dowling, D. K. The genomic origins of small mitochondrial RNAs: are they transcribed by the mitochondrial DNA or by mitochondrial pseudogenes within the nucleus (NUMTs)? Genome Biol. Evol. 11, 1883–1896 (2019).
pubmed: 31218347
pmcid: 6619488
doi: 10.1093/gbe/evz132
Plazzi, F., Puccio, G. & Passamonti, M. Comparative large-scale mitogenomics evidences clade-specific evolutionary trends in mitochondrial DNAs of Bivalvia. Genome Biol. Evol. 8, 2544–2564 (2016).
pubmed: 27503296
pmcid: 5010914
doi: 10.1093/gbe/evw187
Ghiselli, F. et al. Structure, transcription, and variability of metazoan mitochondrial genome: perspectives from an unusual mitochondrial inheritance system. Genome Biol. Evol. 5, 1535–1554 (2013).
pubmed: 23882128
pmcid: 3762199
doi: 10.1093/gbe/evt112
Yang, S. et al. Molecular basis for oncohistone H3 recognition by SETD2 methyltransferase. Genes Dev. 30, 1611–1616 (2016).
pubmed: 27474439
pmcid: 4973290
doi: 10.1101/gad.284323.116
Wang, Y. L., Faiola, F., Xu, M., Pan, S. & Martinez, E. Human ATAC is a GCN5/PCAF-containing acetylase complex with a novel NC2-like histone fold module that interacts with the TATA-binding protein. J. Biol. Chem. 283, 33808–33815 (2008).
pubmed: 18838386
pmcid: 2590711
doi: 10.1074/jbc.M806936200
Kozomara, A., Birgaoanu, M. & Griffiths-Jones, S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 47, D155–D162 (2019).
pubmed: 30423142
pmcid: 30423142
doi: 10.1093/nar/gky1141
Kozomara, A. & Griffiths-Jones, S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42, D68–D73 (2014).
pubmed: 24275495
doi: 10.1093/nar/gkt1181
pmcid: 24275495
Kozomara, A. & Griffiths-Jones, S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39, D152–D157 (2011).
pubmed: 21037258
doi: 10.1093/nar/gkq1027
pmcid: 21037258
Griffiths-Jones, S., Saini, H. K., van Dongen, S. & Enright, A. J. miRBase: tools for microRNA genomics. Nucleic Acids Res. 36, D154–D158 (2008).
pubmed: 17991681
doi: 10.1093/nar/gkm952
pmcid: 17991681
Griffiths-Jones, S., Grocock, R. J., van Dongen, S., Bateman, A. & Enright, A. J. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34, D140–D144 (2006).
pubmed: 16381832
doi: 10.1093/nar/gkj112
pmcid: 16381832
Griffiths-Jones, S. The microRNA Registry. Nucleic Acids Res. 32, D109–D111 (2004).
pubmed: 14681370
pmcid: 308757
doi: 10.1093/nar/gkh023
Wang, J. et al. piRBase: a comprehensive database of piRNA sequences. Nucleic Acids Res. 47, D175–D180 (2019).
pubmed: 30371818
doi: 10.1093/nar/gky1043
pmcid: 30371818
Yuan, J. et al. Computational identification of piRNA targets on mouse mRNAs. Bioinformatics 32, 1170–1177 (2016).
pubmed: 26677964
doi: 10.1093/bioinformatics/btv729
pmcid: 26677964
Zhang, P. et al. MIWI and piRNA-mediated cleavage of messenger RNAs in mouse testes. Cell Res. 25, 193–207 (2015).
pubmed: 25582079
pmcid: 4650574
doi: 10.1038/cr.2015.4
Zhang, P. et al. piRBase: a web resource assisting piRNA functional study. Database (Oxford) 2014, bau110 (2014).
Mituyama, T. et al. The Functional RNA Database 3.0: databases to support mining and annotation of functional RNAs. Nucleic Acids Res. 37(Database issue), D89–D92 (2009).
pubmed: 18948287
doi: 10.1093/nar/gkn805
pmcid: 18948287
Kin, T. et al. fRNAdb: a platform for mining/annotating functional RNA candidates from non-coding RNA sequences. Nucleic Acids Res. 35(Database issue), D145–D148 (2007).
pubmed: 17099231
doi: 10.1093/nar/gkl837
pmcid: 17099231
Fernandes, J. C. R., Acuna, S. M., Aoki, J. I., Floeter-Winter, L. M. & Muxel, S. M. Long non-coding RNAs in the regulation of gene expression: physiology and disease. Noncoding RNA 5, 17 (2019).
pmcid: 6468922
Oberbauer, V. & Schaefer, M. R. tRNA-derived small RNAs: biogenesis, modification, function and potential impact on human disease development. Genes 9, 607 (2018).
pmcid: 6315542
doi: 10.3390/genes9120607
Shin, H., Kim, Y., Kim, M. & Lee, Y. BC200 RNA: an emerging therapeutic target and diagnostic marker for human cancer. Mol. Cells 41, 993–999 (2018).
pubmed: 30590906
pmcid: 6315322
Szczepanek, J., Pareek, C. S. & Tretyn, A. The role of microRNAs in animal physiology and pathology. Transl. Res. Vet. Sci. 1, 13–33 (2018).
doi: 10.12775/TRVS.2018.001
Wang, M. et al. Non-coding RNAs function as immune regulators in teleost fish. Front. Immunol. 9, 2801 (2018).
pubmed: 30546368
pmcid: 6279911
doi: 10.3389/fimmu.2018.02801
Wu, Z., Stone, J. D., Štorchová, H. & Sloan, D. B. high transcript abundance, RNA editing, and small RNAs in intergenic regions within the massive mitochondrial genome of the angiosperm Silene noctiflora. BMC Genomics 16, 938 (2015).
pubmed: 26573088
pmcid: 4647634
doi: 10.1186/s12864-015-2155-3
Bottje, W. G. et al. Identification and differential abundance of mitochondrial genome encoding small RNAs (mitosRNA) in breast muscles of modern broilers and unselected chicken breed. Front. Physiol. 8, 816 (2017).
pubmed: 29104541
pmcid: 5655574
doi: 10.3389/fphys.2017.00816
Baris, T. Z. et al. Evolved genetic and phenotypic differences due to mitochondrial-nuclear interactions. PLoS Genetics 13, e1006517 (2017).
pubmed: 28362806
pmcid: 5375140
doi: 10.1371/journal.pgen.1006517
Innocenti, P., Morrow, E. H. & Dowling, D. K. Experimental evidence supports a sex-specific selective sieve in mitochondrial genome evolution. Science 332, 845–848 (2011).
pubmed: 21566193
doi: 10.1126/science.1201157
pmcid: 21566193
Arnould, T., Michel, S. & Renard, P. Mitochondria retrograde signaling and the UPR
doi: 10.3390/ijms160818224
Cagina, U. & Enriqueza, J. A. The complex crosstalk between mitochondria and the nucleus: What goes in between? Int. J. Biochem. Cell Biol. 63, 10–15 (2015).
doi: 10.1016/j.biocel.2015.01.026
Monaghan, R. M. & Whitmarsh, A. J. Mitochondrial proteins moonlighting in the nucleus. Trends Biochem. Sci. 40, 728–735 (2015).
pubmed: 26520802
doi: 10.1016/j.tibs.2015.10.003
pmcid: 26520802
Maniataki, E. & Mourelatos, Z. Human mitochondrial tRNAMet is exported to the cytoplasm and associates with the Argonaute 2 protein. RNA 11, 849–852 (2005).
pubmed: 15872185
pmcid: 1370769
doi: 10.1261/rna.2210805
Milani, L., Ghiselli, F., Maurizii, M. G. & Passamonti, M. Doubly uniparental inheritance of mitochondria as a model system for studying germ line formation. PLoS One 6, e28194 (2011).
pubmed: 22140544
pmcid: 3226660
doi: 10.1371/journal.pone.0028194
Vendramin, R., Marine, J. C. & Leucci, E. Non-coding RNAs: the dark side of nuclear-mitochondrial communication. EMBO J. 36, 1123–1133 (2017).
pubmed: 28314780
pmcid: 5412819
doi: 10.15252/embj.201695546
Landerer, E. et al. Nuclear localization of the mitochondrial ncRNAs in normal and cancer cells. Cell. Oncol. (Dordr.) 34, 297–305 (2011).
doi: 10.1007/s13402-011-0018-8
Rackham, O. et al. Long noncoding RNAs are generated from the mitochondrial genome and regulated by nuclear-encoded proteins. RNA 17, 2085–2093 (2011).
pubmed: 22028365
pmcid: 3222122
doi: 10.1261/rna.029405.111
Ku, H.-Y. & Lin, H. PIWI proteins and their interactors in piRNA biogenesis, germline development and gene expression. Natl. Sci. Rev. 1, 205–218 (2014).
pubmed: 25512877
pmcid: 4265212
doi: 10.1093/nsr/nwu014
Kwon, C. et al. Detection of PIWI and piRNAs in the mitochondria of mammalian cancer cells. Biochem. Biophys. Res. Commun. 446, 218–223 (2014).
pubmed: 24602614
doi: 10.1016/j.bbrc.2014.02.112
pmcid: 24602614
Jehn, J. et al. PIWI genes and piRNAs are ubiquitously expressed in mollusks and show patterns of lineage-specific adaptation. Comm. Biol. 1, 137 (2018).
doi: 10.1038/s42003-018-0141-4
Le Thomas, A., Toth, K. F. & Aravin, A. A. To be or not to be a piRNA: genomic origin and processing of piRNAs. Genome Biol. 15, 204 (2014).
pubmed: 24467990
pmcid: 4053809
doi: 10.1186/gb4154
Siomi, M. C. et al. PIWI-interacting small RNAs: the vanguard of genome defence. Nat. Rev. Mol. Cell Biol. 12, 246–258 (2011).
pubmed: 21427766
doi: 10.1038/nrm3089
pmcid: 21427766
Aravin, A. A. & Chan, D. C. piRNAs meet mitochondria. Dev Cell. 20, 287–288 (2011).
pubmed: 21397839
doi: 10.1016/j.devcel.2011.03.003
pmcid: 21397839
Kõressaar, T. et al. Primer3_masker: integrating masking of template sequence with primer design software. Bioinformatics 34, 1937–1938 (2018).
pubmed: 29360956
doi: 10.1093/bioinformatics/bty036
pmcid: 29360956
Untergasser, A. et al. Primer3–new capabilities and interfaces. Nucleic Acids Res. 40, e115 (2012).
pubmed: 22730293
pmcid: 3424584
doi: 10.1093/nar/gks596
Kõressaar, T. & Remm, M. Enhancements and modifications of primer design program Primer3. Bioinformatics 23, 1289–1291 (2007).
pubmed: 17379693
doi: 10.1093/bioinformatics/btm091
pmcid: 17379693
Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).
pubmed: 27004904
doi: 10.1093/molbev/msw054
pmcid: 27004904
Vilella, A. J., Blanco-Garcia, A., Hutter, S. & Rozas, J. VariScan: Analysis of evolutionary patterns from large-scale DNA sequence polymorphism data. Bioinformatics 21, 2791–2793 (2005).
pubmed: 15814564
doi: 10.1093/bioinformatics/bti403
pmcid: 15814564
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org (2019).
Dinno, A. dunn.test: Dunn’s Test of Multiple Comparisons Using Rank Sums. R package version 1.3.5. Available at https://CRAN.R-project.org/package=dunn.test (2017).
Conant, G. C. & Wolfe, K. H. GenomeVx: simple web-based creation of editable circular chromosome maps. Bioinformatics 24, 861–862 (2008).
pubmed: 18227121
doi: 10.1093/bioinformatics/btm598
pmcid: 18227121
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404
pmcid: 24695404
doi: 10.1093/bioinformatics/btu170
Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15, R46 (2014).
pubmed: 24580807
pmcid: 4053813
doi: 10.1186/gb-2014-15-3-r46
Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).
pubmed: 21572440
pmcid: 3571712
doi: 10.1038/nbt.1883
Nishimura, O., Hara, Y. & Kuraku, S. gVolante for standardizing completeness assessment of genome and transcriptome assemblies. Bioinformatics 33, 3635–3637 (2017).
pubmed: 29036533
pmcid: 5870689
doi: 10.1093/bioinformatics/btx445
Huang, Z. & Teeling, E. C. ExUTR: a novel pipeline for large-scale prediction of 3′-UTR sequences from NGS data. BMC Genomics 18, 847 (2017).
pubmed: 29110697
pmcid: 5674806
doi: 10.1186/s12864-017-4241-1
Langmead, B. & Salzberg, S. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286
pmcid: 22388286
doi: 10.1038/nmeth.1923
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
pubmed: 20709691
doi: 10.1093/bioinformatics/btq461
pmcid: 20709691
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278
pmcid: 20110278
doi: 10.1093/bioinformatics/btq033
Rice, P., Longden, I. & Bleasby, A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000).
pubmed: 10827456
doi: 10.1016/S0168-9525(00)02024-2
pmcid: 10827456
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2008).
doi: 10.1186/1471-2105-10-421
Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U. & Segal, E. The role of site accessibility in microRNA target recognition. Nature Genet. 39, 1278–1284 (2007).
pubmed: 17893677
doi: 10.1038/ng2135
pmcid: 17893677
Krüger, J. & Rehmsmeier, M. RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res. 34, W451–W454 (2006).
pubmed: 16845047
pmcid: 1538877
doi: 10.1093/nar/gkl243
Lorenz, R. et al. ViennaRNA Package 2.0. Algorithms Mol. Biol. 6, 26 (2011).
pubmed: 22115189
pmcid: 22115189
doi: 10.1186/1748-7188-6-26
Darty, K., Denise, A. & Ponty, Y. VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics 25, 1974–1975 (2009).
pubmed: 19398448
pmcid: 2712331
doi: 10.1093/bioinformatics/btp250
Radivojac, P. et al. A large-scale evaluation of computational protein function prediction. Nat. Methods. 10, 221–227 (2013).
pubmed: 23353650
pmcid: 3584181
doi: 10.1038/nmeth.2340
Falda, M. et al. Argot2: a large scale function prediction tool relying on semantic similarity of weighted Gene Ontology terms. BMC Bioinformatics 13, S14 (2012).
pubmed: 22536960
pmcid: 3314586
doi: 10.1186/1471-2105-13-S4-S14
Fontana, P., Cestaro, A., Velasco, R., Formentin, E. & Toppo, S. Rapid annotation of anonymous sequences from genome projects using semantic similarities and a weighting scheme in gene ontology. PLoS One 4, e4619 (2009).
pubmed: 19247487
pmcid: 2645684
doi: 10.1371/journal.pone.0004619
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
pubmed: 15034147
pmcid: 390337
doi: 10.1093/nar/gkh340