Clues of in vivo nuclear gene regulation by mitochondrial short non-coding RNAs.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
19 05 2020
Historique:
received: 04 12 2019
accepted: 22 04 2020
entrez: 20 5 2020
pubmed: 20 5 2020
medline: 7 1 2021
Statut: epublish

Résumé

Gene expression involves multiple processes, from transcription to translation to the mature, functional peptide, and it is regulated at multiple levels. Small RNA molecules are known to bind RNA messengers affecting their fate in the cytoplasm (a process generically termed 'RNA interference'). Such small regulatory RNAs are well-known to be originated from the nuclear genome, while the role of mitochondrial genome in RNA interference was largely overlooked. However, evidence is growing that mitochondrial DNA does provide the cell a source of interfering RNAs. Small mitochondrial highly transcribed RNAs (smithRNAs) have been proposed to be transcribed from the mitochondrion and predicted to regulate nuclear genes. Here, for the first time, we show in vivo clues of the activity of two smithRNAs in the Manila clam, Ruditapes philippinarum. Moreover, we show that smithRNAs are present and can be annotated in representatives of the three main bilaterian lineages; in some cases, they were already described and assigned to a small RNA category (e.g., piRNAs) given their biogenesis, while in other cases their biogenesis remains unclear. If mitochondria may affect nuclear gene expression through RNA interference, this opens a plethora of new possibilities for them to interact with the nucleus and makes metazoan mitochondrial DNA a much more complex genome than previously thought.

Identifiants

pubmed: 32427953
doi: 10.1038/s41598-020-65084-z
pii: 10.1038/s41598-020-65084-z
pmc: PMC7237437
doi:

Substances chimiques

DNA, Mitochondrial 0
RNA, Untranslated 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

8219

Références

Brouwer, I. & Lenstra, T. L. Visualizing transcription: key to understanding gene expression dynamics. Curr. Opin. Chem. Biol. 51, 122–129 (2019).
pubmed: 31284216 doi: 10.1016/j.cbpa.2019.05.031 pmcid: 31284216
Buchberger, E., Reis, M., Lu, T.-H. & Posnien, N. Cloudy with a chance of insights: context dependent gene regulation and implications for evolutionary studies. Genes 10, 492 (2019).
pmcid: 6678813 doi: 10.3390/genes10070492
Kim, S. S. & Lee, S.-J. V. Non-coding RNAs in Caenorhabditis elegans aging. Mol. Cells 42, 379–385 (2019).
pubmed: 31094164 pmcid: 6537654
Larriba, E. & del Mazo, J. Role of non-coding RNAs in the transgenerational epigenetic transmission of the effects of reprotoxicants. Int. J. Mol. Sci. 17, 452 (2016).
pubmed: 27023531 pmcid: 4848908 doi: 10.3390/ijms17040452
Cech, T. R. & Steitz, J. A. The noncoding RNA revolution—trashing old rules to forge new ones. Cell 157, 77–94 (2014).
pubmed: 24679528 doi: 10.1016/j.cell.2014.03.008 pmcid: 24679528
Ghildiyal, M. & Zamore, P. D. Small silencing RNAs: an expanding universe. Nat. Rev. Genet. 10, 94–108 (2009).
pubmed: 19148191 pmcid: 2724769 doi: 10.1038/nrg2504
Fromm, B. et al. A uniform system for the annotation of vertebrate microRNA genes and the evolution of the human microRNAome. Annu. Rev. Genet. 49, 213–242 (2015).
pubmed: 26473382 pmcid: 4743252 doi: 10.1146/annurev-genet-120213-092023
Wessels, H. H. et al. Global identification of functional microRNA-mRNA interactions in Drosophila. Nat Commun. 10, 1626 (2019).
pubmed: 30967537 pmcid: 6456604 doi: 10.1038/s41467-019-09586-z
O’Brien, J., Hayder, H., Zayed, Y. & Peng, C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. 9, 402 (2018).
doi: 10.3389/fendo.2018.00402
Ha, M. & Kim, V. N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15, 509–524 (2014).
pubmed: 25027649 doi: 10.1038/nrm3838 pmcid: 25027649
García-López, J., Brieño-Enríquez, M. A. & del Mazo, J. MicroRNA biogenesis and variability. BioMol Concepts 4, 367–380 (2013).
pubmed: 25436586 doi: 10.1515/bmc-2013-0015 pmcid: 25436586
Ozata, D. M., Gainetdinov, I., Zoch, A., O’Carroll, D. & Zamore, P. D. PIWI-interacting RNAs: small RNAs with big functions. Nat. Rev. Genet. 20, 89–108 (2019).
pubmed: 30446728 doi: 10.1038/s41576-018-0073-3 pmcid: 30446728
Weick, E. M. & Miska, E. A. piRNAs: from biogenesis to function. Development 141, 3458–3471 (2014).
pubmed: 25183868 doi: 10.1242/dev.094037 pmcid: 25183868
Bamezai, S., Rawat, V. P. & Buske, C. Concise review: The Piwi-piRNA axis: pivotal beyond transposon silencing. Stem Cells 30, 2603–2611 (2012).
pubmed: 22996918 doi: 10.1002/stem.1237 pmcid: 22996918
Cloonan, N. Re-thinking miRNA-mRNA interactions: intertwining issues confound target discovery. Bioessays 37, 379–388 (2015).
pubmed: 25683051 pmcid: 4671252 doi: 10.1002/bies.201400191
Bartel, D. P. Metazoan microRNAs. Cell 173, 20–50 (2018).
pubmed: 29570994 pmcid: 6091663 doi: 10.1016/j.cell.2018.03.006
Lee, Y. et al. The role of PACT in the RNA silencing pathway. EMBO J. 25, 522–532 (2006).
pubmed: 16424907 pmcid: 1383527 doi: 10.1038/sj.emboj.7600942
Chendrimada, T. P. et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740–744 (2005).
pubmed: 15973356 pmcid: 2944926 doi: 10.1038/nature03868
Förstemann, K. et al. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol. 3, e236 (2005).
pubmed: 15918770 pmcid: 1141267 doi: 10.1371/journal.pbio.0030236
Jiang, F. et al. Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila. Genes Dev. 19, 1674–1679 (2005).
pubmed: 15985611 pmcid: 1176004 doi: 10.1101/gad.1334005
Saito, K., Ishizuka, A., Siomi, H. & Siomi, M. C. Processing of pre-microRNAs by the Dicer-1-Loquacious complex in Drosophila cells. PLoS Biol. 3, e235 (2005).
pubmed: 15918769 pmcid: 1141268 doi: 10.1371/journal.pbio.0030235
Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).
pubmed: 11201747 doi: 10.1038/35053110 pmcid: 11201747
Grishok, A. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106, 23–34 (2001).
pubmed: 11461699 doi: 10.1016/S0092-8674(01)00431-7 pmcid: 11461699
Hutvágner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838 (2001).
pubmed: 11452083 doi: 10.1126/science.1062961 pmcid: 11452083
Ketting, R. F. et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 15, 2654–2659 (2001).
pubmed: 11641272 pmcid: 312808 doi: 10.1101/gad.927801
Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F. & Hannon, G. J. Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231–235 (2004).
pubmed: 15531879 doi: 10.1038/nature03049 pmcid: 15531879
Gregory, R. I. et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235–240 (2004).
pubmed: 15531877 doi: 10.1038/nature03120 pmcid: 15531877
Han, J. et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 18, 3016–3027 (2004).
pubmed: 15574589 pmcid: 535913 doi: 10.1101/gad.1262504
Landthaler, M., Yalcin, A. & Tuschl, T. The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol. 14, 2162–2167 (2004).
pubmed: 15589161 doi: 10.1016/j.cub.2004.11.001 pmcid: 15589161
Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003).
pubmed: 14508493 doi: 10.1038/nature01957 pmcid: 14508493
Lee, Y., Jeon, K., Lee, J. T., Kim, S. & Kim, V. N. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 21, 4663–4670 (2002).
pubmed: 12198168 pmcid: 126204 doi: 10.1093/emboj/cdf476
Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).
pubmed: 3794896 pmcid: 3794896 doi: 10.1016/j.cell.2009.01.002
Breton, S. et al. A resourceful genome: updating the functional repertoire and evolutionary role of animal mitochondrial DNAs. Trends Genet. 30, 555–564 (2014).
pubmed: 25263762 doi: 10.1016/j.tig.2014.09.002 pmcid: 25263762
Gissi, C. et al. Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity 101, 301–320 (2008).
pubmed: 18612321 doi: 10.1038/hdy.2008.62 pmcid: 18612321
Boore, J. L. Animal mitochondrial genomes. Nucleic Acids Res. 27, 1767–1780 (1999).
pubmed: 10101183 pmcid: 148383 doi: 10.1093/nar/27.8.1767
Mercer, T. R. et al. The human mitochondrial transcriptome. Cell 146, 645–658 (2011).
pubmed: 21854988 pmcid: 3160626 doi: 10.1016/j.cell.2011.06.051
Haussecker, D. et al. Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 16, 673–695 (2010).
pubmed: 20181738 pmcid: 2844617 doi: 10.1261/rna.2000810
Lee, Y. S., Shibata, Y., Malhotra, A. & Dutta, A. A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev. 23, 2639–2649 (2009).
pubmed: 19933153 pmcid: 2779758 doi: 10.1101/gad.1837609
Ro, S. et al. The mitochondrial genome encodes abundant small noncoding RNAs. Cell Res. 23, 759–774 (2013).
pubmed: 23478297 pmcid: 3674384 doi: 10.1038/cr.2013.37
Larriba, E., Rial, E. & del Mazo, J. The landscape of mitochondrial small non-coding RNAs in the PGCs of male mice, spermatogonia, gametes and in zygotes. BMC Genomics 19, 634 (2018).
pubmed: 30153810 pmcid: 6114042 doi: 10.1186/s12864-018-5020-3
Riggs, C. L. et al. Small non-coding RNA expression and vertebrate anoxia tolerance Front. Genet. 9, 230 (2018).
Hill, G. E. Mitonuclear Ecology (Oxford University Press, 2019).
Dong, Y., Yoshitomi, T., Hu, J.-F. & Cui, J. Long noncoding RNAs coordinate functions between mitochondria and the nucleus. Epigenet. Chromatin 10, 41 (2017).
doi: 10.1186/s13072-017-0149-x
Pozzi, A., Plazzi, F., Milani, L., Ghiselli, F. & Passamonti, M. SmithRNAs: could mitochondria “bend” nuclear regulation? Mol. Biol. Evol. 34, 1960–1973 (2017).
pubmed: 28444389 pmcid: 5850712 doi: 10.1093/molbev/msx140
Passamonti, M. & Plazzi, F. Doubly Uniparental Inheritance and beyond: The contribution of the Manila clam Ruditapes philippinarum. J. Zool. Syst. Evol. Res., https://doi.org/10.1111/jzs.12371 (2020).
Gusman, A., Lecomte, S., Stewart, D. T., Passamonti, M. & Breton, S. Pursuing the quest for better understanding the taxonomic distribution of the system of doubly uniparental inheritance of mtDNA. PeerJ 4, e2760 (2016).
pubmed: 27994972 pmcid: 5157197 doi: 10.7717/peerj.2760
Zouros, E. Biparental Inheritance Through Uniparental Transmission: The Doubly Uniparental Inheritance (DUI) of Mitochondrial DNA. Evol. Biol. 40, 1–31 (2013).
doi: 10.1007/s11692-012-9195-2
Pozzi, A. & Dowling, D. K. The genomic origins of small mitochondrial RNAs: are they transcribed by the mitochondrial DNA or by mitochondrial pseudogenes within the nucleus (NUMTs)? Genome Biol. Evol. 11, 1883–1896 (2019).
pubmed: 31218347 pmcid: 6619488 doi: 10.1093/gbe/evz132
Plazzi, F., Puccio, G. & Passamonti, M. Comparative large-scale mitogenomics evidences clade-specific evolutionary trends in mitochondrial DNAs of Bivalvia. Genome Biol. Evol. 8, 2544–2564 (2016).
pubmed: 27503296 pmcid: 5010914 doi: 10.1093/gbe/evw187
Ghiselli, F. et al. Structure, transcription, and variability of metazoan mitochondrial genome: perspectives from an unusual mitochondrial inheritance system. Genome Biol. Evol. 5, 1535–1554 (2013).
pubmed: 23882128 pmcid: 3762199 doi: 10.1093/gbe/evt112
Yang, S. et al. Molecular basis for oncohistone H3 recognition by SETD2 methyltransferase. Genes Dev. 30, 1611–1616 (2016).
pubmed: 27474439 pmcid: 4973290 doi: 10.1101/gad.284323.116
Wang, Y. L., Faiola, F., Xu, M., Pan, S. & Martinez, E. Human ATAC is a GCN5/PCAF-containing acetylase complex with a novel NC2-like histone fold module that interacts with the TATA-binding protein. J. Biol. Chem. 283, 33808–33815 (2008).
pubmed: 18838386 pmcid: 2590711 doi: 10.1074/jbc.M806936200
Kozomara, A., Birgaoanu, M. & Griffiths-Jones, S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 47, D155–D162 (2019).
pubmed: 30423142 pmcid: 30423142 doi: 10.1093/nar/gky1141
Kozomara, A. & Griffiths-Jones, S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42, D68–D73 (2014).
pubmed: 24275495 doi: 10.1093/nar/gkt1181 pmcid: 24275495
Kozomara, A. & Griffiths-Jones, S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39, D152–D157 (2011).
pubmed: 21037258 doi: 10.1093/nar/gkq1027 pmcid: 21037258
Griffiths-Jones, S., Saini, H. K., van Dongen, S. & Enright, A. J. miRBase: tools for microRNA genomics. Nucleic Acids Res. 36, D154–D158 (2008).
pubmed: 17991681 doi: 10.1093/nar/gkm952 pmcid: 17991681
Griffiths-Jones, S., Grocock, R. J., van Dongen, S., Bateman, A. & Enright, A. J. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34, D140–D144 (2006).
pubmed: 16381832 doi: 10.1093/nar/gkj112 pmcid: 16381832
Griffiths-Jones, S. The microRNA Registry. Nucleic Acids Res. 32, D109–D111 (2004).
pubmed: 14681370 pmcid: 308757 doi: 10.1093/nar/gkh023
Wang, J. et al. piRBase: a comprehensive database of piRNA sequences. Nucleic Acids Res. 47, D175–D180 (2019).
pubmed: 30371818 doi: 10.1093/nar/gky1043 pmcid: 30371818
Yuan, J. et al. Computational identification of piRNA targets on mouse mRNAs. Bioinformatics 32, 1170–1177 (2016).
pubmed: 26677964 doi: 10.1093/bioinformatics/btv729 pmcid: 26677964
Zhang, P. et al. MIWI and piRNA-mediated cleavage of messenger RNAs in mouse testes. Cell Res. 25, 193–207 (2015).
pubmed: 25582079 pmcid: 4650574 doi: 10.1038/cr.2015.4
Zhang, P. et al. piRBase: a web resource assisting piRNA functional study. Database (Oxford) 2014, bau110 (2014).
Mituyama, T. et al. The Functional RNA Database 3.0: databases to support mining and annotation of functional RNAs. Nucleic Acids Res. 37(Database issue), D89–D92 (2009).
pubmed: 18948287 doi: 10.1093/nar/gkn805 pmcid: 18948287
Kin, T. et al. fRNAdb: a platform for mining/annotating functional RNA candidates from non-coding RNA sequences. Nucleic Acids Res. 35(Database issue), D145–D148 (2007).
pubmed: 17099231 doi: 10.1093/nar/gkl837 pmcid: 17099231
Fernandes, J. C. R., Acuna, S. M., Aoki, J. I., Floeter-Winter, L. M. & Muxel, S. M. Long non-coding RNAs in the regulation of gene expression: physiology and disease. Noncoding RNA 5, 17 (2019).
pmcid: 6468922
Oberbauer, V. & Schaefer, M. R. tRNA-derived small RNAs: biogenesis, modification, function and potential impact on human disease development. Genes 9, 607 (2018).
pmcid: 6315542 doi: 10.3390/genes9120607
Shin, H., Kim, Y., Kim, M. & Lee, Y. BC200 RNA: an emerging therapeutic target and diagnostic marker for human cancer. Mol. Cells 41, 993–999 (2018).
pubmed: 30590906 pmcid: 6315322
Szczepanek, J., Pareek, C. S. & Tretyn, A. The role of microRNAs in animal physiology and pathology. Transl. Res. Vet. Sci. 1, 13–33 (2018).
doi: 10.12775/TRVS.2018.001
Wang, M. et al. Non-coding RNAs function as immune regulators in teleost fish. Front. Immunol. 9, 2801 (2018).
pubmed: 30546368 pmcid: 6279911 doi: 10.3389/fimmu.2018.02801
Wu, Z., Stone, J. D., Štorchová, H. & Sloan, D. B. high transcript abundance, RNA editing, and small RNAs in intergenic regions within the massive mitochondrial genome of the angiosperm Silene noctiflora. BMC Genomics 16, 938 (2015).
pubmed: 26573088 pmcid: 4647634 doi: 10.1186/s12864-015-2155-3
Bottje, W. G. et al. Identification and differential abundance of mitochondrial genome encoding small RNAs (mitosRNA) in breast muscles of modern broilers and unselected chicken breed. Front. Physiol. 8, 816 (2017).
pubmed: 29104541 pmcid: 5655574 doi: 10.3389/fphys.2017.00816
Baris, T. Z. et al. Evolved genetic and phenotypic differences due to mitochondrial-nuclear interactions. PLoS Genetics 13, e1006517 (2017).
pubmed: 28362806 pmcid: 5375140 doi: 10.1371/journal.pgen.1006517
Innocenti, P., Morrow, E. H. & Dowling, D. K. Experimental evidence supports a sex-specific selective sieve in mitochondrial genome evolution. Science 332, 845–848 (2011).
pubmed: 21566193 doi: 10.1126/science.1201157 pmcid: 21566193
Arnould, T., Michel, S. & Renard, P. Mitochondria retrograde signaling and the UPR
doi: 10.3390/ijms160818224
Cagina, U. & Enriqueza, J. A. The complex crosstalk between mitochondria and the nucleus: What goes in between? Int. J. Biochem. Cell Biol. 63, 10–15 (2015).
doi: 10.1016/j.biocel.2015.01.026
Monaghan, R. M. & Whitmarsh, A. J. Mitochondrial proteins moonlighting in the nucleus. Trends Biochem. Sci. 40, 728–735 (2015).
pubmed: 26520802 doi: 10.1016/j.tibs.2015.10.003 pmcid: 26520802
Maniataki, E. & Mourelatos, Z. Human mitochondrial tRNAMet is exported to the cytoplasm and associates with the Argonaute 2 protein. RNA 11, 849–852 (2005).
pubmed: 15872185 pmcid: 1370769 doi: 10.1261/rna.2210805
Milani, L., Ghiselli, F., Maurizii, M. G. & Passamonti, M. Doubly uniparental inheritance of mitochondria as a model system for studying germ line formation. PLoS One 6, e28194 (2011).
pubmed: 22140544 pmcid: 3226660 doi: 10.1371/journal.pone.0028194
Vendramin, R., Marine, J. C. & Leucci, E. Non-coding RNAs: the dark side of nuclear-mitochondrial communication. EMBO J. 36, 1123–1133 (2017).
pubmed: 28314780 pmcid: 5412819 doi: 10.15252/embj.201695546
Landerer, E. et al. Nuclear localization of the mitochondrial ncRNAs in normal and cancer cells. Cell. Oncol. (Dordr.) 34, 297–305 (2011).
doi: 10.1007/s13402-011-0018-8
Rackham, O. et al. Long noncoding RNAs are generated from the mitochondrial genome and regulated by nuclear-encoded proteins. RNA 17, 2085–2093 (2011).
pubmed: 22028365 pmcid: 3222122 doi: 10.1261/rna.029405.111
Ku, H.-Y. & Lin, H. PIWI proteins and their interactors in piRNA biogenesis, germline development and gene expression. Natl. Sci. Rev. 1, 205–218 (2014).
pubmed: 25512877 pmcid: 4265212 doi: 10.1093/nsr/nwu014
Kwon, C. et al. Detection of PIWI and piRNAs in the mitochondria of mammalian cancer cells. Biochem. Biophys. Res. Commun. 446, 218–223 (2014).
pubmed: 24602614 doi: 10.1016/j.bbrc.2014.02.112 pmcid: 24602614
Jehn, J. et al. PIWI genes and piRNAs are ubiquitously expressed in mollusks and show patterns of lineage-specific adaptation. Comm. Biol. 1, 137 (2018).
doi: 10.1038/s42003-018-0141-4
Le Thomas, A., Toth, K. F. & Aravin, A. A. To be or not to be a piRNA: genomic origin and processing of piRNAs. Genome Biol. 15, 204 (2014).
pubmed: 24467990 pmcid: 4053809 doi: 10.1186/gb4154
Siomi, M. C. et al. PIWI-interacting small RNAs: the vanguard of genome defence. Nat. Rev. Mol. Cell Biol. 12, 246–258 (2011).
pubmed: 21427766 doi: 10.1038/nrm3089 pmcid: 21427766
Aravin, A. A. & Chan, D. C. piRNAs meet mitochondria. Dev Cell. 20, 287–288 (2011).
pubmed: 21397839 doi: 10.1016/j.devcel.2011.03.003 pmcid: 21397839
Kõressaar, T. et al. Primer3_masker: integrating masking of template sequence with primer design software. Bioinformatics 34, 1937–1938 (2018).
pubmed: 29360956 doi: 10.1093/bioinformatics/bty036 pmcid: 29360956
Untergasser, A. et al. Primer3–new capabilities and interfaces. Nucleic Acids Res. 40, e115 (2012).
pubmed: 22730293 pmcid: 3424584 doi: 10.1093/nar/gks596
Kõressaar, T. & Remm, M. Enhancements and modifications of primer design program Primer3. Bioinformatics 23, 1289–1291 (2007).
pubmed: 17379693 doi: 10.1093/bioinformatics/btm091 pmcid: 17379693
Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).
pubmed: 27004904 doi: 10.1093/molbev/msw054 pmcid: 27004904
Vilella, A. J., Blanco-Garcia, A., Hutter, S. & Rozas, J. VariScan: Analysis of evolutionary patterns from large-scale DNA sequence polymorphism data. Bioinformatics 21, 2791–2793 (2005).
pubmed: 15814564 doi: 10.1093/bioinformatics/bti403 pmcid: 15814564
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org (2019).
Dinno, A. dunn.test: Dunn’s Test of Multiple Comparisons Using Rank Sums. R package version 1.3.5. Available at https://CRAN.R-project.org/package=dunn.test (2017).
Conant, G. C. & Wolfe, K. H. GenomeVx: simple web-based creation of editable circular chromosome maps. Bioinformatics 24, 861–862 (2008).
pubmed: 18227121 doi: 10.1093/bioinformatics/btm598 pmcid: 18227121
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404 pmcid: 24695404 doi: 10.1093/bioinformatics/btu170
Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15, R46 (2014).
pubmed: 24580807 pmcid: 4053813 doi: 10.1186/gb-2014-15-3-r46
Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).
pubmed: 21572440 pmcid: 3571712 doi: 10.1038/nbt.1883
Nishimura, O., Hara, Y. & Kuraku, S. gVolante for standardizing completeness assessment of genome and transcriptome assemblies. Bioinformatics 33, 3635–3637 (2017).
pubmed: 29036533 pmcid: 5870689 doi: 10.1093/bioinformatics/btx445
Huang, Z. & Teeling, E. C. ExUTR: a novel pipeline for large-scale prediction of 3′-UTR sequences from NGS data. BMC Genomics 18, 847 (2017).
pubmed: 29110697 pmcid: 5674806 doi: 10.1186/s12864-017-4241-1
Langmead, B. & Salzberg, S. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286 pmcid: 22388286 doi: 10.1038/nmeth.1923
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
pubmed: 20709691 doi: 10.1093/bioinformatics/btq461 pmcid: 20709691
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278 pmcid: 20110278 doi: 10.1093/bioinformatics/btq033
Rice, P., Longden, I. & Bleasby, A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000).
pubmed: 10827456 doi: 10.1016/S0168-9525(00)02024-2 pmcid: 10827456
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2008).
doi: 10.1186/1471-2105-10-421
Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U. & Segal, E. The role of site accessibility in microRNA target recognition. Nature Genet. 39, 1278–1284 (2007).
pubmed: 17893677 doi: 10.1038/ng2135 pmcid: 17893677
Krüger, J. & Rehmsmeier, M. RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res. 34, W451–W454 (2006).
pubmed: 16845047 pmcid: 1538877 doi: 10.1093/nar/gkl243
Lorenz, R. et al. ViennaRNA Package 2.0. Algorithms Mol. Biol. 6, 26 (2011).
pubmed: 22115189 pmcid: 22115189 doi: 10.1186/1748-7188-6-26
Darty, K., Denise, A. & Ponty, Y. VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics 25, 1974–1975 (2009).
pubmed: 19398448 pmcid: 2712331 doi: 10.1093/bioinformatics/btp250
Radivojac, P. et al. A large-scale evaluation of computational protein function prediction. Nat. Methods. 10, 221–227 (2013).
pubmed: 23353650 pmcid: 3584181 doi: 10.1038/nmeth.2340
Falda, M. et al. Argot2: a large scale function prediction tool relying on semantic similarity of weighted Gene Ontology terms. BMC Bioinformatics 13, S14 (2012).
pubmed: 22536960 pmcid: 3314586 doi: 10.1186/1471-2105-13-S4-S14
Fontana, P., Cestaro, A., Velasco, R., Formentin, E. & Toppo, S. Rapid annotation of anonymous sequences from genome projects using semantic similarities and a weighting scheme in gene ontology. PLoS One 4, e4619 (2009).
pubmed: 19247487 pmcid: 2645684 doi: 10.1371/journal.pone.0004619
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
pubmed: 15034147 pmcid: 390337 doi: 10.1093/nar/gkh340

Auteurs

Marco Passamonti (M)

Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy.

Marco Calderone (M)

Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy.

Manuel Delpero (M)

Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy.
Department of Crop and Animal Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.

Federico Plazzi (F)

Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy. federico.plazzi@unibo.it.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH