microRNA -378a-3p Restrains the Proliferation of Retinoblastoma Cells but Promotes Apoptosis of Retinoblastoma Cells via Inhibition of FOXG1.
Animals
Apoptosis
Blotting, Western
Cell Cycle
/ physiology
Cell Proliferation
/ physiology
Cell Survival
/ physiology
Child, Preschool
Female
Flow Cytometry
Forkhead Transcription Factors
/ genetics
Gene Expression Profiling
Gene Expression Regulation, Neoplastic
/ physiology
Humans
In Situ Nick-End Labeling
Male
Mice
Mice, Inbred BALB C
Mice, Nude
MicroRNAs
/ physiology
Nerve Tissue Proteins
/ genetics
Plasmids
/ genetics
Real-Time Polymerase Chain Reaction
Retinal Neoplasms
/ metabolism
Retinoblastoma
/ metabolism
Specific Pathogen-Free Organisms
Transfection
Transplantation, Heterologous
Tumor Cells, Cultured
Journal
Investigative ophthalmology & visual science
ISSN: 1552-5783
Titre abrégé: Invest Ophthalmol Vis Sci
Pays: United States
ID NLM: 7703701
Informations de publication
Date de publication:
11 05 2020
11 05 2020
Historique:
entrez:
20
5
2020
pubmed:
20
5
2020
medline:
29
9
2020
Statut:
ppublish
Résumé
More recently, literature has emerged providing findings about the novelty of microRNAs (miR)-targeted therapeutics in the treatment of retinoblastoma (RB). The prime objective of this study was to identify the potential role of miR-378a-3p and its regulation in RB cells via forkhead box G1 (FOXG1). The expression of miR-378a-3p and FOXG1 in the clinical RB tissues was determined using RNA quantitation and Western blot assays. The interaction between miR-378a-3p and FOXG1 was identified using dual luciferase reporter gene assay. The potential effects of miR-378a-3p on the RB cell biological processes were evaluated by conducting gain- and loss-of-function studies of miR-378a-3p and FOXG1, followed by cell viability, cell cycle progression, and apoptosis measurements. Furthermore, experiments were performed in nude mice to assess its effects on tumor formation. miR-378a-3p was poorly expressed, whereas FOXG1 was highly expressed in RB tissues and cells. miR-378a-3p bound to the FOXG1 3' untranslated region and negatively modulated its expression. The overexpression of miR-378a-3p was found to decrease RB cell viability and to promote cell apoptosis in vitro, whereas overexpressed FOXG1 reversed the regulatory effects of miR-378a-3p on RB cellular behaviors. In nude mice, the restoration of miR-378a-3p by miR-378a-3p agomir was shown to play a role in the reduction of tumor volume and size relative to nude mice injected with negative control-agomir. Our findings identified that increased miR-378a-3p exerted an inhibitory effect on RB cell proliferation by targeting FOXG1, suggesting the role of miR-378a-3p as a novel therapeutic target for RB.
Identifiants
pubmed: 32428232
pii: 2766215
doi: 10.1167/iovs.61.5.31
pmc: PMC7405766
doi:
Substances chimiques
FOXG1 protein, human
0
Forkhead Transcription Factors
0
Foxg1 protein, mouse
0
MIRN378 microRNA, human
0
MicroRNAs
0
Nerve Tissue Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
31Références
Biomed Pharmacother. 2018 Sep;105:805-812
pubmed: 29913409
Cell Signal. 2016 Aug;28(8):850-60
pubmed: 27094723
Nat Rev Dis Primers. 2015 Aug 27;1:15021
pubmed: 27189421
Genes Dev. 2011 Aug 15;25(16):1663-7
pubmed: 21852531
Clin Invest Med. 2010 Aug 01;33(4):E223-33
pubmed: 20691140
J Neurosci. 2008 Oct 8;28(41):10415-21
pubmed: 18842901
FEBS J. 2014 Mar;281(5):1355-65
pubmed: 24289859
Clin Transl Gastroenterol. 2016 Mar 10;7:e152
pubmed: 26963002
Biochem Biophys Res Commun. 2018 Sep 26;504(1):46-53
pubmed: 30172378
Thorac Cancer. 2018 Aug;9(8):939-949
pubmed: 29897167
BMC Cancer. 2018 Dec 10;18(1):1230
pubmed: 30526546
J Control Release. 2019 Mar 28;298:177-185
pubmed: 30776396
Acta Pharmacol Sin. 2013 Jul;34(7):870-9
pubmed: 23624759
Annu Rev Pathol. 2015;10:547-62
pubmed: 25621664
Mater Sci Eng C Mater Biol Appl. 2019 Oct;103:109799
pubmed: 31349439
Genes Dev. 2017 Apr 15;31(8):757-773
pubmed: 28465359
Plant Biol (Stuttg). 2013 Jul;15(4):686-93
pubmed: 23590453
Sci Rep. 2015 Aug 10;5:13170
pubmed: 26255816
Proc Natl Acad Sci U S A. 2015 Nov 10;112(45):13910-5
pubmed: 26508630
Ophthalmology. 2018 Nov;125(11):1812
pubmed: 30318041
Int J Mol Med. 2018 Jul;42(1):381-391
pubmed: 29693138
Clin Cancer Res. 2017 Jul 1;23(13):e98-e106
pubmed: 28674118
Hum Pathol. 2015 Dec;46(12):1859-71
pubmed: 26433703
Mini Rev Med Chem. 2016;16(6):430-54
pubmed: 26202204
Mol Med Rep. 2019 Aug;20(2):1333-1342
pubmed: 31173241
Oncol Res. 2018 May 7;26(4):581-591
pubmed: 28550678
Biomed Pharmacother. 2019 Oct;118:109111
pubmed: 31336343
Biomed Pharmacother. 2018 Nov;107:1410-1417
pubmed: 30257357
FEBS Lett. 2014 Jun 5;588(12):2107-14
pubmed: 24815696
Curr Med Chem. 2013;20(29):3574-81
pubmed: 23834181
Nat Commun. 2013;4:2956
pubmed: 24356439
Trends Mol Med. 2016 Oct;22(10):863-876
pubmed: 27567287
J Cancer. 2018 Feb 11;9(5):778-783
pubmed: 29581755
Nat Commun. 2018 Jan 31;9(1):461
pubmed: 29386624
Tumour Biol. 2016 Aug;37(8):11177-86
pubmed: 26935060
Mol Oncol. 2018 Jun;12(6):775-787
pubmed: 29316219
Semin Cancer Biol. 2016 Oct;40-41:35-47
pubmed: 27038646