Ambient Air Pollution Associations with Retinal Morphology in the UK Biobank.
Adult
Aged
Air Pollution
/ adverse effects
Biological Specimen Banks
Cross-Sectional Studies
Female
Humans
Male
Middle Aged
Nerve Fibers
/ drug effects
Nitrogen Oxides
/ adverse effects
Particulate Matter
/ adverse effects
Photoreceptor Cells, Vertebrate
/ drug effects
Retinal Diseases
/ chemically induced
Retinal Ganglion Cells
/ drug effects
Retinal Pigment Epithelium
/ diagnostic imaging
Surveys and Questionnaires
Tomography, Optical Coherence
United Kingdom
Journal
Investigative ophthalmology & visual science
ISSN: 1552-5783
Titre abrégé: Invest Ophthalmol Vis Sci
Pays: United States
ID NLM: 7703701
Informations de publication
Date de publication:
11 05 2020
11 05 2020
Historique:
entrez:
20
5
2020
pubmed:
20
5
2020
medline:
29
9
2020
Statut:
ppublish
Résumé
Because air pollution has been linked to glaucoma and AMD, we characterized the relationship between pollution and retinal structure. We examined data from 51,710 UK Biobank participants aged 40 to 69 years old. Ambient air pollution measures included particulates and nitrogen oxides. SD-OCT imaging measured seven retinal layers: retinal nerve fiber layer, ganglion cell-inner plexiform layer, inner nuclear layer, outer plexiform layer + outer nuclear layer, photoreceptor inner segments, photoreceptor outer segments, and RPE. Multivariable regression was used to evaluate associations between pollutants (per interquartile range increase) and retinal thickness, adjusting for age, sex, race, Townsend deprivation index, body mass index, smoking status, and refractive error. Participants exposed to greater particulate matter with an aerodynamic diameter of <2.5 µm (PM2.5) and higher nitrogen oxides were more likely to have thicker retinal nerve fiber layer (β = 0.28 µm; 95% CI, 0.22-0.34; P = 3.3 × 10-20 and β = 0.09 µm; 95% CI, 0.04-0.14; P = 2.4 × 10-4, respectively), and thinner ganglion cell-inner plexiform layer, inner nuclear layer, and outer plexiform layer + outer nuclear layer thicknesses (P < 0.001). Participants resident in areas of higher levels of PM2.5 absorbance were more likely to have thinner retinal nerve fiber layer, inner nuclear layer, and outer plexiform layer + outer nuclear layers (β = -0.16 [95% CI, -0.22 to -0.10; P = 5.7 × 10-8]; β = -0.09 [95% CI, -0.12 to -0.06; P = 2.2 × 10-12]; and β = -0.12 [95% CI, -0.19 to -0.05; P = 8.3 × 10-4], respectively). Greater exposure to PM2.5, PM2.5 absorbance, and nitrogen oxides were all associated with apparently adverse retinal structural features.
Identifiants
pubmed: 32428233
pii: 2766216
doi: 10.1167/iovs.61.5.32
pmc: PMC7405693
doi:
Substances chimiques
Nitrogen Oxides
0
Particulate Matter
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
32Subventions
Organisme : Medical Research Council
ID : MR/T019050/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/T040912/1
Pays : United Kingdom
Organisme : Department of Health
Pays : United Kingdom
Références
Brain Res. 1986 Feb 5;364(2):258-67
pubmed: 2418917
PLoS One. 2016 Oct 7;11(10):e0164095
pubmed: 27716837
Acta Ophthalmol. 2019 May;97(3):e349-e355
pubmed: 30790460
J Air Waste Manag Assoc. 1997 Dec;47(12):1238-49
pubmed: 9448515
JAMA Neurol. 2018 Oct 1;75(10):1256-1263
pubmed: 29946702
Am J Respir Crit Care Med. 2000 Feb;161(2 Pt 1):550-7
pubmed: 10673199
Nature. 2015 Sep 17;525(7569):367-71
pubmed: 26381985
Nat Rev Neurosci. 2014 Jul;15(7):431-42
pubmed: 24894585
Arch Ophthalmol. 1995 Mar;113(3):325-32
pubmed: 7887846
Invest Ophthalmol Vis Sci. 1988 May;29(5):671-9
pubmed: 3366562
Ophthalmology. 2020 Jan;127(1):62-71
pubmed: 31585827
Opt Express. 2010 Sep 27;18(20):21293-307
pubmed: 20941025
Environ Sci Technol. 2012 Oct 16;46(20):11195-205
pubmed: 22963366
Toxicol Appl Pharmacol. 2001 Sep 15;175(3):191-9
pubmed: 11559017
N Engl J Med. 2007 Sep 13;357(11):1075-82
pubmed: 17855668
Ophthalmology. 2009 Mar;116(3):488-496.e2
pubmed: 19167082
Ophthalmology. 2017 Jan;124(1):105-117
pubmed: 27720551
Toxicol Appl Pharmacol. 2000 Oct 15;168(2):140-8
pubmed: 11032769
Circulation. 2018 Nov 13;138(20):2175-2186
pubmed: 30524134
J Neurochem. 2015 Jul;134(2):315-26
pubmed: 25913161
Cutan Ocul Toxicol. 2016 Dec;35(4):275-80
pubmed: 26653369
N Engl J Med. 1993 Dec 9;329(24):1753-9
pubmed: 8179653
Br J Ophthalmol. 2014 Jul;98 Suppl 2:ii15-9
pubmed: 24357497
Ophthalmology. 2016 Apr;123(4):829-40
pubmed: 26746598
BMJ Open. 2019 Feb 21;9(2):e025077
pubmed: 30796124
J Toxicol. 2011;2011:487074
pubmed: 21860622
J Thromb Haemost. 2007 Feb;5(2):252-60
pubmed: 17083648
J Neuroophthalmol. 2015 Sep;35(3):242-5
pubmed: 25724010
Invest Ophthalmol Vis Sci. 2013 Sep 05;54(9):5953-8
pubmed: 23920375
Invest Ophthalmol Vis Sci. 2019 Nov 1;60(14):4915-4923
pubmed: 31764948
Sci Total Environ. 2019 Mar 10;655:1240-1248
pubmed: 30577116
Nat Nanotechnol. 2011 Nov 06;6(12):824-33
pubmed: 22056725
Sci Rep. 2018 Aug 14;8(1):12089
pubmed: 30108252
Prog Retin Eye Res. 2012 Mar;31(2):152-81
pubmed: 22155051
Cochrane Database Syst Rev. 2015 Jan 07;1:CD008081
pubmed: 25564068
Prog Retin Eye Res. 2009 Nov;28(6):423-51
pubmed: 19660572
Am J Epidemiol. 2017 Nov 1;186(9):1026-1034
pubmed: 28641372
J Diabetes Res. 2013;2013:905058
pubmed: 23841106
Invest Ophthalmol Vis Sci. 2005 Dec;46(12):4788-95
pubmed: 16303980
Brain Res. 1986 Sep 3;381(2):244-50
pubmed: 2428435
Circulation. 2010 Jun 1;121(21):2331-78
pubmed: 20458016
Am J Ophthalmol. 2004 Jan;137(1):156-69
pubmed: 14700659
Ophthalmology. 2012 Jun;119(6):1151-8
pubmed: 22365056
Mol Aspects Med. 2012 Aug;33(4):399-417
pubmed: 22510306
J Investig Med. 2019 Oct;67(7):1076-1081
pubmed: 31427389
Lancet. 2017 May 13;389(10082):1907-1918
pubmed: 28408086
J Comp Neurol. 1990 Oct 1;300(1):5-25
pubmed: 2229487
PLoS One. 2015 Oct 02;10(10):e0139780
pubmed: 26430771
Neurology. 2016 Jun 14;86(24):2303-9
pubmed: 27225223