Fiberless, Multi-Channel fNIRS-EEG System Based on Silicon Photomultipliers: Towards Sensitive and Ecological Mapping of Brain Activity and Neurovascular Coupling.
clinical brain monitoring
electroencephalography (EEG)
functional near infrared spectroscopy (fNIRS)
multimodal neuroimaging
neurovascular coupling
silicon photomultipliers
Journal
Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366
Informations de publication
Date de publication:
16 May 2020
16 May 2020
Historique:
received:
07
04
2020
revised:
08
05
2020
accepted:
13
05
2020
entrez:
21
5
2020
pubmed:
21
5
2020
medline:
2
3
2021
Statut:
epublish
Résumé
Portable neuroimaging technologies can be employed for long-term monitoring of neurophysiological and neuropathological states. Functional Near-Infrared Spectroscopy (fNIRS) and Electroencephalography (EEG) are highly suited for such a purpose. Their multimodal integration allows the evaluation of hemodynamic and electrical brain activity together with neurovascular coupling. An innovative fNIRS-EEG system is here presented. The system integrated a novel continuous-wave fNIRS component and a modified commercial EEG device. fNIRS probing relied on fiberless technology based on light emitting diodes and silicon photomultipliers (SiPMs). SiPMs are sensitive semiconductor detectors, whose large detection area maximizes photon harvesting from the scalp and overcomes limitations of fiberless technology. To optimize the signal-to-noise ratio and avoid fNIRS-EEG interference, a digital lock-in was implemented for fNIRS signal acquisition. A benchtop characterization of the fNIRS component showed its high performances with a noise equivalent power below 1 pW. Moreover, the fNIRS-EEG device was tested in vivo during tasks stimulating visual, motor and pre-frontal cortices. Finally, the capabilities to perform ecological recordings were assessed in clinical settings on one Alzheimer's Disease patient during long-lasting cognitive tests. The system can pave the way to portable technologies for accurate evaluation of multimodal brain activity, allowing their extensive employment in ecological environments and clinical practice.
Identifiants
pubmed: 32429372
pii: s20102831
doi: 10.3390/s20102831
pmc: PMC7285196
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : H2020, ECSEL-04-2015-Smart Health
ID : 692470
Références
Neuroimage. 2014 Jan 15;85 Pt 1:535-46
pubmed: 23558099
Neurocrit Care. 2015 Aug;23(1):108-12
pubmed: 25750001
Doc Ophthalmol. 2004 Mar;108(2):115-23
pubmed: 15455794
Biomed Opt Express. 2016 Sep 27;7(10):4275-4288
pubmed: 27867731
Gerontology. 2010;56(1):112-9
pubmed: 19641287
Curr Opin Anaesthesiol. 2014 Feb;27(1):81-8
pubmed: 24366053
J Biomed Opt. 2013 Feb;18(2):25005
pubmed: 23416925
Neuroimage. 2014 Jan 15;85 Pt 1:64-71
pubmed: 23810973
Opt Express. 1998 May 11;2(10):411-23
pubmed: 19381209
Neurophotonics. 2019 Jul;6(3):035005
pubmed: 31423455
Conf Proc IEEE Eng Med Biol Soc. 2019 Jul;2019:60-66
pubmed: 31945845
Neurophotonics. 2018 Jan;5(1):011012
pubmed: 28983490
Neurophotonics. 2017 Oct;4(4):041411
pubmed: 28840162
Neuropsychologia. 1995 Mar;33(3):341-52
pubmed: 7792000
Curr Opin Neurobiol. 2004 Oct;14(5):629-35
pubmed: 15464897
Epilepsia. 2002;43 Suppl 9:50-5
pubmed: 12383281
Biomed Opt Express. 2016 Mar 07;7(4):1183-92
pubmed: 27486551
Neuroimage. 2015 May 15;112:128-137
pubmed: 25747916
Front Psychol. 2013 Jan 10;3:606
pubmed: 23335907
Biomed Opt Express. 2013 Apr 03;4(5):659-66
pubmed: 23667783
Sci Rep. 2016 Jul 25;6:30157
pubmed: 27452397
Opt Express. 2008 Jul 7;16(14):10323-30
pubmed: 18607442
Semin Cardiothorac Vasc Anesth. 2016 Sep;20(3):213-24
pubmed: 27206637
IEEE Trans Biomed Eng. 2017 Jun;64(6):1199-1210
pubmed: 28113241
J Neural Eng. 2017 Aug;14(4):046029
pubmed: 28504643
J Vis Exp. 2015 Dec 2;(106):
pubmed: 26651025
IEEE Trans Biomed Circuits Syst. 2013 Apr;7(2):186-95
pubmed: 23853301
Hum Brain Mapp. 2018 Jan;39(1):7-23
pubmed: 29058341
Neuroimage. 2014 Jan 15;85 Pt 1:6-27
pubmed: 23684868
Neurophotonics. 2016 Jul;3(3):031405
pubmed: 27054143
Acta Neurochir Suppl. 2015;120:243-7
pubmed: 25366631
Neuroimage. 2012 Nov 1;63(2):921-35
pubmed: 22510258
Commun Numer Methods Eng. 2008 Aug 15;25(6):711-732
pubmed: 20182646
Brain Res. 2009 Feb 9;1253:139-48
pubmed: 19084509
Phys Med Biol. 1988 Dec;33(12):1433-42
pubmed: 3237772
J Med Syst. 2015 Apr;39(4):205
pubmed: 25686912
Neurosci Biobehav Rev. 2010 Mar;34(3):269-84
pubmed: 19632270
Neuroimage. 2014 Jan 15;85 Pt 1:28-50
pubmed: 23747285
Neurophotonics. 2017 Apr;4(2):021103
pubmed: 28466026
Jpn Psychol Res. 2018 Oct;60(4):347-373
pubmed: 30643322
Neuroimage. 2014 Jan 15;85 Pt 1:245-54
pubmed: 23867556
Neurophotonics. 2015 Apr;2(2):025005
pubmed: 26158009
Psychol Rev. 2016 Apr;123(3):255-90
pubmed: 26751852
Neurophotonics. 2017 Oct;4(4):041413
pubmed: 28840164
IEEE Trans Biomed Eng. 2019 Aug;66(8):2372-2380
pubmed: 30582523
Neurophotonics. 2018 Jan;5(1):011010
pubmed: 28983489
Clin Neurophysiol. 2004 May;115(5):1220-32
pubmed: 15066548
Neuroimage. 2012 Jul 16;61(4):1120-8
pubmed: 22330315
J Cereb Blood Flow Metab. 2020 Apr 28;:271678X20921973
pubmed: 32345103
Neurophotonics. 2017 Jul;4(3):035002
pubmed: 28983487
J Biomed Opt. 2013 Oct;18(10):105004
pubmed: 24121731
Neurophysiol Clin. 2010 Nov-Dec;40(5-6):281-92
pubmed: 21093799
J Neural Eng. 2013 Oct;10(5):056001
pubmed: 23893764
Clin Chem. 1991 Sep;37(9):1633-8
pubmed: 1716537
Biomed Opt Express. 2016 Nov 15;7(12):5104-5119
pubmed: 28018728