Deletion of H-ferritin in macrophages alleviates obesity and diabetes induced by high-fat diet in mice.
Diabetes
H-ferritin
Inflammation
Iron
Macrophage
Obesity
Journal
Diabetologia
ISSN: 1432-0428
Titre abrégé: Diabetologia
Pays: Germany
ID NLM: 0006777
Informations de publication
Date de publication:
08 2020
08 2020
Historique:
received:
14
10
2019
accepted:
09
03
2020
pubmed:
21
5
2020
medline:
12
8
2021
entrez:
21
5
2020
Statut:
ppublish
Résumé
Iron accumulation affects obesity and diabetes, both of which are ameliorated by iron reduction. Ferritin, an iron-storage protein, plays a crucial role in iron metabolism. H-ferritin exerts its cytoprotective action by reducing toxicity via its ferroxidase activity. We investigated the role of macrophage H-ferritin in obesity and diabetes. Conditional macrophage-specific H-ferritin (Fth, also known as Fth1) knockout (LysM-Cre Fth KO) mice were used and divided into four groups: wild-type (WT) and LysM-Cre Fth KO mice with normal diet (ND), and WT and LysM-Cre Fth KO mice with high-fat diet (HFD). These mice were analysed for characteristics of obesity and diabetes, tissue iron content, inflammation, oxidative stress, insulin sensitivity and metabolic measurements. RAW264.7 macrophage cells were used for in vitro experiments. Iron concentration reduced, and mRNA expression of ferroportin increased, in macrophages from LysM-Cre Fth KO mice. HFD-induced obesity was lower in LysM-Cre Fth KO mice than in WT mice at 12 weeks (body weight: KO 34.6 ± 5.6 g vs WT 40.1 ± 5.2 g). mRNA expression of inflammatory cytokines and infiltrated macrophages and oxidative stress increased in the adipose tissue of HFD-fed WT mice, but was not elevated in HFD-fed LysM-Cre Fth KO mice. However, WT mice fed an HFD had elevated iron concentration in adipose tissue and spleen, which was not observed in LysM-Cre Fth KO mice fed an HFD (adipose tissue [μmol Fe/g protein]: KO 1496 ± 479 vs WT 2316 ± 866; spleen [μmol Fe/g protein]: KO 218 ± 54 vs WT 334 ± 83). Moreover, HFD administration impaired both glucose tolerance and insulin sensitivity in WT mice, which was ameliorated in LysM-Cre Fth KO mice. In addition, energy expenditure, mRNA expression of thermogenic genes, and body temperature were higher in KO mice with HFD than WT mice with HFD. In vitro experiments showed that iron content was reduced, and lipopolysaccharide-induced Tnf-α (also known as Tnf) mRNA upregulation was inhibited in a macrophage cell line transfected with Fth siRNA. Deletion of macrophage H-ferritin suppresses the inflammatory response by reducing intracellular iron levels, resulting in the prevention of HFD-induced obesity and diabetes. The findings from this study highlight macrophage iron levels as a potential therapeutic target for obesity and diabetes.
Identifiants
pubmed: 32430665
doi: 10.1007/s00125-020-05153-0
pii: 10.1007/s00125-020-05153-0
doi:
Substances chimiques
Apoferritins
9013-31-4
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1588-1602Subventions
Organisme : Japan Society for the Promotion of Science
ID : 18K08480
Pays : International
Références
Camaschella C (2005) Understanding iron homeostasis through genetic analysis of hemochromatosis and related disorders. Blood 106(12):3710–3717. https://doi.org/10.1182/blood-2005-05-1857
doi: 10.1182/blood-2005-05-1857
pubmed: 16030190
Ryan Caballes F, Sendi H, Bonkovsky HL (2012) Hepatitis C, porphyria cutanea tarda and liver iron: an update. Liver Int 32(6):880–893. https://doi.org/10.1111/j.1478-3231.2012.02794.x
doi: 10.1111/j.1478-3231.2012.02794.x
pubmed: 22510500
pmcid: 3418709
Dongiovanni P, Fracanzani AL, Fargion S, Valenti L (2011) Iron in fatty liver and in the metabolic syndrome: a promising therapeutic target. J Hepatol 55(4):920–932. https://doi.org/10.1016/j.jhep.2011.05.008
doi: 10.1016/j.jhep.2011.05.008
pubmed: 21718726
Nikonorov AA, Skalnaya MG, Tinkov AA, Skalny AV (2015) Mutual interaction between iron homeostasis and obesity pathogenesis. J Trace Elem Med Biol 30:207–214. https://doi.org/10.1016/j.jtemb.2014.05.005
doi: 10.1016/j.jtemb.2014.05.005
pubmed: 24916791
Fernandez-Real JM, Manco M (2014) Effects of iron overload on chronic metabolic diseases. Lancet Diabetes Endocrinol 2(6):513–526. https://doi.org/10.1016/S2213-8587(13)70174-8
doi: 10.1016/S2213-8587(13)70174-8
pubmed: 24731656
Kremastinos DT, Farmakis D (2011) Iron overload cardiomyopathy in clinical practice. Circulation 124(20):2253–2263. https://doi.org/10.1161/CIRCULATIONAHA.111.050773
doi: 10.1161/CIRCULATIONAHA.111.050773
pubmed: 22083147
Depalma RG, Hayes VW, Chow BK, Shamayeva G, May PE, Zacharski LR (2010) Ferritin levels, inflammatory biomarkers, and mortality in peripheral arterial disease: a substudy of the Iron (Fe) and Atherosclerosis Study (FeAST) Trial. J Vasc Surg 51(6):1498–1503. https://doi.org/10.1016/j.jvs.2009.12.068
doi: 10.1016/j.jvs.2009.12.068
pubmed: 20304584
Ribeiro S, Belo L, Reis F, Santos-Silva A (2016) Iron therapy in chronic kidney disease: recent changes, benefits and risks. Blood Rev 30(1):65–72. https://doi.org/10.1016/j.blre.2015.07.006
doi: 10.1016/j.blre.2015.07.006
pubmed: 26342303
Nakanishi T, Kuragano T, Nanami M, Otaki Y, Nonoguchi H, Hasuike Y (2010) Importance of ferritin for optimizing anemia therapy in chronic kidney disease. Am J Nephrol 32(5):439–446. https://doi.org/10.1159/000320733
doi: 10.1159/000320733
pubmed: 20881381
Beaton MD, Chakrabarti S, Levstik M, Speechley M, Marotta P, Adams P (2013) Phase II clinical trial of phlebotomy for non-alcoholic fatty liver disease. Aliment Pharmacol Ther 37(7):720–729. https://doi.org/10.1111/apt.12255
doi: 10.1111/apt.12255
pubmed: 23441892
Tajima S, Ikeda Y, Sawada K et al (2012) Iron reduction by deferoxamine leads to amelioration of adiposity via the regulation of oxidative stress and inflammation in obese and type 2 diabetes KKAy mice. Am J Physiol Endocrinol Metab 302(1):E77–E86. https://doi.org/10.1152/ajpendo.00033.2011
doi: 10.1152/ajpendo.00033.2011
pubmed: 21917632
Ikeda Y, Enomoto H, Tajima S et al (2013) Dietary iron restriction inhibits progression of diabetic nephropathy in db/db mice. Am J Physiol Ren Physiol 304(7):F1028–F1036. https://doi.org/10.1152/ajprenal.00473.2012
doi: 10.1152/ajprenal.00473.2012
Ikeda Y, Horinouchi Y, Hamano H et al (2017) Dietary iron restriction alleviates renal tubulointerstitial injury induced by protein overload in mice. Sci Rep 7(1):10621. https://doi.org/10.1038/s41598-017-11089-0
doi: 10.1038/s41598-017-11089-0
pubmed: 28878231
pmcid: 5587788
Naito Y, Hirotani S, Sawada H, Akahori H, Tsujino T, Masuyama T (2011) Dietary iron restriction prevents hypertensive cardiovascular remodeling in Dahl salt-sensitive rats. Hypertension 57(3):497–504. https://doi.org/10.1161/HYPERTENSIONAHA.110.159681
doi: 10.1161/HYPERTENSIONAHA.110.159681
pubmed: 21263124
Ganz T (2012) Macrophages and systemic iron homeostasis. J Innate Immun 4(5–6):446–453. https://doi.org/10.1159/000336423
doi: 10.1159/000336423
pubmed: 22441209
pmcid: 6741611
Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164(12):6166–6173
doi: 10.4049/jimmunol.164.12.6166
Recalcati S, Locati M, Marini A et al (2010) Differential regulation of iron homeostasis during human macrophage polarized activation. Eur J Immunol 40(3):824–835. https://doi.org/10.1002/eji.200939889
doi: 10.1002/eji.200939889
pubmed: 20039303
Corna G, Campana L, Pignatti E et al (2010) Polarization dictates iron handling by inflammatory and alternatively activated macrophages. Haematologica 95(11):1814–1822. https://doi.org/10.3324/haematol.2010.023879
doi: 10.3324/haematol.2010.023879
pubmed: 20511666
pmcid: 2966902
Recalcati S, Locati M, Gammella E, Invernizzi P, Cairo G (2012) Iron levels in polarized macrophages: regulation of immunity and autoimmunity. Autoimmun Rev 11(12):883–889. https://doi.org/10.1016/j.autrev.2012.03.003
doi: 10.1016/j.autrev.2012.03.003
pubmed: 22449938
Tsukamoto H, Lin M, Ohata M, Giulivi C, French SW, Brittenham G (1999) Iron primes hepatic macrophages for NF-κB activation in alcoholic liver injury. Am J Phys 277(6):G1240–G1250. https://doi.org/10.1152/ajpgi.1999.277.6.G1240
doi: 10.1152/ajpgi.1999.277.6.G1240
Autenrieth IB, Bohn E, Ewald JH, Heesemann J (1995) Deferoxamine B but not deferoxamine G1 inhibits cytokine production in murine bone marrow macrophages. J Infect Dis 172(2):490–496. https://doi.org/10.1093/infdis/172.2.490
doi: 10.1093/infdis/172.2.490
pubmed: 7622893
Ikeda Y, Tajima S, Izawa-Ishizawa Y et al (2012) Estrogen regulates hepcidin expression via GPR30-BMP6-dependent signaling in hepatocytes. PLoS One 7(7):e40465. https://doi.org/10.1371/journal.pone.0040465
doi: 10.1371/journal.pone.0040465
pubmed: 22792339
pmcid: 3394730
Li DQ, Luo L, Chen Z, Kim HS, Song XJ, Pflugfelder SC (2006) JNK and ERK MAP kinases mediate induction of IL-1β, TNF-α and IL-8 following hyperosmolar stress in human limbal epithelial cells. Exp Eye Res 82(4):588–596. https://doi.org/10.1016/j.exer.2005.08.019
doi: 10.1016/j.exer.2005.08.019
pubmed: 16202406
pmcid: 16202406
Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1275(3):161–203. https://doi.org/10.1016/0005-2728(96)00022-9
doi: 10.1016/0005-2728(96)00022-9
pubmed: 8695634
Lawson DM, Artymiuk PJ, Yewdall SJ et al (1991) Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature 349(6309):541–544. https://doi.org/10.1038/349541a0
doi: 10.1038/349541a0
pubmed: 1992356
Lawson DM, Treffry A, Artymiuk PJ et al (1989) Identification of the ferroxidase centre in ferritin. FEBS Lett 254(1–2):207–210. https://doi.org/10.1016/0014-5793(89)81040-3
doi: 10.1016/0014-5793(89)81040-3
pubmed: 2776883
Santambrogio P, Levi S, Cozzi A, Corsi B, Arosio P (1996) Evidence that the specificity of iron incorporation into homopolymers of human ferritin L- and H-chains is conferred by the nucleation and ferroxidase centres. Biochem J 314(Pt 1):139–144
doi: 10.1042/bj3140139
Klausner RD, Harford JB (1989) cis–trans models for post-transcriptional gene regulation. Science 246(4932):870–872. https://doi.org/10.1126/science.2683086
doi: 10.1126/science.2683086
pubmed: 2683086
Tsuji Y, Ayaki H, Whitman SP, Morrow CS, Torti SV, Torti FM (2000) Coordinate transcriptional and translational regulation of ferritin in response to oxidative stress. Mol Cell Biol 20(16):5818–5827. https://doi.org/10.1128/mcb.20.16.5818-5827.2000
doi: 10.1128/mcb.20.16.5818-5827.2000
pubmed: 10913165
pmcid: 86059
Miller LL, Miller SC, Torti SV, Tsuji Y, Torti FM (1991) Iron-independent induction of ferritin H chain by tumor necrosis factor. Proc Natl Acad Sci U S A 88(11):4946–4950. https://doi.org/10.1073/pnas.88.11.4946
doi: 10.1073/pnas.88.11.4946
pubmed: 2052577
pmcid: 51784
Rogers JT (1996) Ferritin translation by interleukin-1and interleukin-6: the role of sequences upstream of the start codons of the heavy and light subunit genes. Blood 87(6):2525–2537
doi: 10.1182/blood.V87.6.2525.bloodjournal8762525
Omiya S, Hikoso S, Imanishi Y et al (2009) Downregulation of ferritin heavy chain increases labile iron pool, oxidative stress and cell death in cardiomyocytes. J Mol Cell Cardiol 46(1):59–66. https://doi.org/10.1016/j.yjmcc.2008.09.714
doi: 10.1016/j.yjmcc.2008.09.714
pubmed: 18992754
Zarjou A, Bolisetty S, Joseph R et al (2013) Proximal tubule H-ferritin mediates iron trafficking in acute kidney injury. J Clin Invest 123(10):4423–4434. https://doi.org/10.1172/JCI67867
doi: 10.1172/JCI67867
pubmed: 24018561
pmcid: 3784534
Berberat PO, Katori M, Kaczmarek E et al (2003) Heavy chain ferritin acts as an antiapoptotic gene that protects livers from ischemia reperfusion injury. FASEB J 17(12):1724–1726. https://doi.org/10.1096/fj.03-0229fje
doi: 10.1096/fj.03-0229fje
pubmed: 12958189
Bolisetty S, Zarjou A, Hull TD et al (2015) Macrophage and epithelial cell H-ferritin expression regulates renal inflammation. Kidney Int 88(1):95–108. https://doi.org/10.1038/ki.2015.102
doi: 10.1038/ki.2015.102
pubmed: 25874599
pmcid: 4490000
Minamiyama Y, Takemura S, Kodai S et al (2010) Iron restriction improves type 2 diabetes mellitus in Otsuka Long–Evans Tokushima fatty rats. Am J Physiol Endocrinol Metab 298(6):E1140–E1149. https://doi.org/10.1152/ajpendo.00620.2009
doi: 10.1152/ajpendo.00620.2009
pubmed: 20215574
Yan HF, Liu ZY, Guan ZA, Guo C (2018) Deferoxamine ameliorates adipocyte dysfunction by modulating iron metabolism in ob/ob mice. Endocr Connect 7(4):604–616. https://doi.org/10.1530/EC-18-0054
doi: 10.1530/EC-18-0054
pubmed: 29678877
pmcid: 5911700
Dandona P, Aljada A, Bandyopadhyay A (2004) Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol 25(1):4–7. https://doi.org/10.1016/j.it.2003.10.013
doi: 10.1016/j.it.2003.10.013
pubmed: 14698276
Cancello R, Henegar C, Viguerie N et al (2005) Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes 54(8):2277–2286. https://doi.org/10.2337/diabetes.54.8.2277
doi: 10.2337/diabetes.54.8.2277
pubmed: 16046292
Cancello R, Tordjman J, Poitou C et al (2006) Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes 55(6):1554–1561. https://doi.org/10.2337/db06-0133
doi: 10.2337/db06-0133
pubmed: 16731817
Lumeng CN, Bodzin JL, Saltiel AR (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117(1):175–184. https://doi.org/10.1172/JCI29881
doi: 10.1172/JCI29881
pubmed: 17200717
pmcid: 1716210
Orr JS, Kennedy A, Anderson-Baucum EK et al (2014) Obesity alters adipose tissue macrophage iron content and tissue iron distribution. Diabetes 63(2):421–432. https://doi.org/10.2337/db13-0213
doi: 10.2337/db13-0213
pubmed: 24130337
pmcid: 3900546
Zarjou A, Black LM, McCullough KR et al (2019) Ferritin light chain confers protection against sepsis-induced inflammation and organ injury. Front Immunol 10:131. https://doi.org/10.3389/fimmu.2019.00131
doi: 10.3389/fimmu.2019.00131
pubmed: 30804939
pmcid: 6371952
Wu J, Bostrom P, Sparks LM et al (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150(2):366–376. https://doi.org/10.1016/j.cell.2012.05.016
doi: 10.1016/j.cell.2012.05.016
pubmed: 22796012
pmcid: 22796012
Corna G, Caserta I, Monno A et al (2016) The repair of skeletal muscle requires iron recycling through macrophage ferroportin. J Immunol 197(5):1914–1925. https://doi.org/10.4049/jimmunol.1501417
doi: 10.4049/jimmunol.1501417
pubmed: 27465531
Guo W, Bachman E, Li M et al (2013) Testosterone administration inhibits hepcidin transcription and is associated with increased iron incorporation into red blood cells. Aging Cell 12(2):280–291. https://doi.org/10.1111/acel.12052
doi: 10.1111/acel.12052
pubmed: 23399021
pmcid: 3602280