First investigation and absolute calibration of clumped isotopes in N
Journal
Rapid communications in mass spectrometry : RCM
ISSN: 1097-0231
Titre abrégé: Rapid Commun Mass Spectrom
Pays: England
ID NLM: 8802365
Informations de publication
Date de publication:
15 Aug 2020
15 Aug 2020
Historique:
received:
31
03
2020
revised:
13
05
2020
accepted:
14
05
2020
pubmed:
21
5
2020
medline:
21
5
2020
entrez:
21
5
2020
Statut:
ppublish
Résumé
Unravelling the biogeochemical cycle of the potent greenhouse gas nitrous oxide (N We present a laser spectroscopic technique to selectively and simultaneously measure the eight most abundant isotopocules of N The method is validated for a large range of isotopic composition values by comparison with other established methods (laser spectroscopy using conventional isotopic scale and isotope ratio mass spectrometry). Direct intercomparison with recently developed ultrahigh-resolution mass spectrometry shows clearly the advantages of the new laser technique, especially with respect to site specificity of isotopic substitution in the N Our study represents a new methodological basis for the measurements of both singly substituted and clumped N
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e8836Subventions
Organisme : H2020 Marie Skłodowska-Curie Actions
ID : 10754364
Organisme : Japan Society for the Promotion of Science (JSPS)
ID : GR18108, Kiban-S 17H06105
Organisme : Swiss National Science Foundation (SNSF)
ID : F200021_166255
Informations de copyright
© 2020 John Wiley & Sons, Ltd.
Références
Forster P., Ramaswamy V, Artaxo P, et al. Changes in atmospheric constituents and in radiative forcing. Chapter 2. In: S. Solomon, D. Qin, M. Manning, et al., eds. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY; 2007. https://doi.org/10.1038/nrc3183
Ravishankara AR, Daniel JS, Portmann RW. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science. 2009;326(5949):123-125. https://doi.org/10.1126/science.1176985
World Meteorological Organization, Global Atmosphere Watch. The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2018, WMO Greenhouse Gas Bulletin No. 15; 2019. Cambridge, UK and New York, NY: Cambridge University Press.
Thompson RL, Lassaletta L, Patra PK, et al. Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nat Clim Chang. 2019;9(12):993-998. https://doi.org/10.1038/s41558-019-0613-7
Ostrom NE, Ostrom PH. Mining the isotopic complexity of nitrous oxide: A review of challenges and opportunities. Biogeochemistry. 2017;132(3):359-372. https://doi.org/10.1007/s10533-017-0301-5
Coplen TB. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun Mass Spectrom. 2011;25(17):2538-2560. https://doi.org/10.1002/rcm.5129
Rothman LS, Gordon IE, Babikov Y, et al. The HITRAN2012 molecular spectroscopic database. J Quant Spectrosc Radiat Transf. 2013;130:4-50. https://doi.org/10.1016/J.JQSRT.2013.07.002
Toyoda S, Yoshida N. Determination of nitrogen isotopomers of nitrous oxide on a modified isotope ratio mass spectrometer. Anal Chem. 1999;71(20):4711-4718. https://doi.org/10.1021/ac9904563
Brewer PJ, Kim JS, Lee S, et al. Advances in reference materials and measurement techniques for greenhouse gas atmospheric observations. Metrologia. 2019;56(3):1-29. https://doi.org/10.1088/1681-7575/ab1506
Yoshida N. 15N-depleted N2O as a product of nitrification. Nature. 1988;335(6190):528-529. https://doi.org/10.1038/335528a0
Kim K, Craig H. Nitrogen-15 and oxygen-18 characteristics of nitrous oxide: A global perspective. Science. 1993;262(5141):1855-1857. https://doi.org/10.1126/science.262.5141.1855
Snider DM, Venkiteswaran JJ, Schiff SL, Spoelstra J. Deciphering the oxygen isotope composition of nitrous oxide produced by nitrification. Glob Chang Biol. 2012;18(1):356-370. https://doi.org/10.1111/j.1365-2486.2011.02547.x
Rohe L, Anderson T-H, Braker G, et al. Fungal oxygen exchange between denitrification intermediates and water. Rapid Commun Mass Spectrom. 2014;28(4):377-384. https://doi.org/10.1002/rcm.6790
Richet P. The Physical Basis of Thermodynamics with Applications to Chemistry. 1st ed. New York, NY: Springer Science+Business Media; 2001.
Yoshida N, Toyoda S. Constraining the atmospheric N2O budget from intramolecular site preference in N2O isotopomers. Nature. 2000;405(6784):330-334. https://doi.org/10.1038/35012558
Magyar PM, Orphan VJ, Eiler JM. Measurement of rare isotopologues of nitrous oxide by high-resolution multi-collector mass spectrometry. Rapid Commun Mass Spectrom. 2016;30(17):1923-1940. https://doi.org/10.1002/rcm.7671
Toyoda S, Yoshida N, Koba K. Isotopocule analysis of biologically produced nitrous oxide in various environments. Mass Spectrom Rev. 2017;36(2):135-160. https://doi.org/10.1002/mas.21459
Wang Z, Schauble EA, Eiler JM. Equilibrium thermodynamics of multiply substituted isotopologues of molecular gases. Geochim Cosmochim Acta. 2004;68(23):4779-4797. https://doi.org/10.1016/j.gca.2004.05.039
Eiler JM. “Clumped-isotope” geochemistry: The study of naturally-occurring, multiply-substituted isotopologues. Earth Planet Sci Lett. 2007;262(3-4):309-327. https://doi.org/10.1016/j.epsl.2007.08.020
Grauel AL, Schmid TW, Hu B, et al. Calibration and application of the “clumped isotope” thermometer to foraminifera for high-resolution climate reconstructions. Geochim Cosmochim Acta. 2013;108:125-140. https://doi.org/10.1016/j.gca.2012.12.049
Yeung LY. Biological signatures in clumped isotopes of O2. Science. 2015;348(6233):431-434. https://doi.org/10.1126/science.aaa6284
Shoun H, Fushinobu S, Jiang L, Kim S-W, Wakagi T. Fungal denitrification and nitric oxide reductase cytochrome P450nor. Philos Trans R Soc B. 2012;367(1593):1186-1194. https://doi.org/10.1098/rstb.2011.0335
Heil J, Wolf B, Brüggemann N, et al. Site-specific 15N isotopic signatures of abiotically produced N2O. Geochim Cosmochim Acta. 2014;139:72-82. https://doi.org/10.1016/j.gca.2014.04.037
Schmidt JA, Johnson MS. Clumped isotope perturbation in tropospheric nitrous oxide from stratospheric photolysis. Geophys Res Lett. 2015;42(9):3546-3552. https://doi.org/10.1002/2015GL063102
Kaiser J, Röckmann T, Brenninkmeijer CAM. Assessment of 15N15N16O as a tracer of stratospheric processes. Geophys Res Lett. 2003;30(2):16-19. https://doi.org/10.1029/2002GL016253
Tuzson B, Mohn J, Zeeman MJ, et al. High precision and continuous field measurements of 13C and 18O in carbon dioxide with a cryogen-free QCLAS. Appl Phys B. 2008;92(3):451-458. https://doi.org/10.1007/s00340-008-3085-4
Röckmann T, Eyer S, Van Der Veen C, et al. In situ observations of the isotopic composition of methane at the Cabauw tall tower site. Atmos Chem Phys. 2016;16(16):10469-10487. https://doi.org/10.5194/acp-16-10469-2016
Waechter H, Mohn J, Tuzson B, Emmenegger L, Sigrist MW. Determination of N2O isotopomers with quantum cascade laser based absorption spectroscopy. Opt Express. 2008;16(12):9239-9244. https://doi.org/10.1364/OE.16.00923
Ono S, Wang DT, Gruen DS, et al. Measurement of a doubly substituted methane isotopologue, 13CH3D, by tunable infrared laser direct absorption spectroscopy. Anal Chem. 2014;86(13):6487-6494. https://doi.org/10.1021/ac5010579
Gonzalez Y, Nelson DD, Shorter JH, et al. Precise measurements of 12CH2D2 by tunable infrared laser direct absorption spectroscopy. Anal Chem. 2019;91(23):14967-14974. https://doi.org/10.1021/acs.analchem.9b03412
Prokhorov I, Kluge T, Janssen C. Laser absorption spectroscopy of rare and doubly substituted carbon dioxide isotopologues. Anal Chem. 2019;91(24):15491-15499. https://doi.org/10.1021/acs.analchem.9b03316
Wang Z, Nelson DD, Dettman DL, et al. Rapid and precise analysis of carbon dioxide clumped isotopic composition by tunable infrared laser differential spectroscopy. Anal Chem. 2020;92(2):2034-2042. https://doi.org/10.1021/acs.analchem.9b04466
Western CM. PGOPHER: A program for simulating rotational, vibrational and electronic spectra. J Quant Spectrosc Radiat Transf. 2017;186:221-242. https://doi.org/10.1016/J.JQSRT.2016.04.010
Toth RA. Line-frequency measurements and analysis of N2O between 900 and 4700 cm−1. Appl Optics. 1991;30(36):5289-5315. https://doi.org/10.1364/AO.30.005289
Du J, Liu A, Perevalov VI, Tashkun SA, Hu S. High-resolution infrared spectroscopy of 15N2O in 1650-3450 cm−1. Chinese J Chem Phys. 2011;24(5):611-619. https://doi.org/10.1088/1674-0068/24/05/611-619
Wang CY, Liu AW, Perevalov VI, Tashkun SA, Song KF, Hu SM. High-resolution infrared spectroscopy of 14N15N16O and 15N14N16O in the 1200-3500 cm−1 region. J Mol Spectrosc. 2009;257(1):94-104. https://doi.org/10.1016/j.jms.2009.06.012
Jacquinet-Husson N, Armante R, Scott NA, et al. The 2015 edition of the GEISA spectroscopic database. J Mol Spectrosc. 2016;327:31-72. https://doi.org/10.1016/J.JMS.2016.06.007
Prokhorov I, Kluge T, Janssen C. Optical clumped isotope thermometry of carbon dioxide. Sci Rep. 2019;9(1):1-11. https://doi.org/10.1038/s41598-019-40750-z
Werner RA, Brand WA. Referencing strategies and techniques in stable isotope ratio analysis. Rapid Commun Mass Spectrom. 2001;15(7):501-519. https://doi.org/10.1002/rcm.258
Harris SJ, Liisberg J, Xia L, et al. N2O isotopocule measurements using laser spectroscopy: Analyzer characterization and intercomparison. Atmos Meas Tech Discuss. 2019;2019:1-84. https://doi.org/10.5194/amt-2019-451
Werle P, Mücke R, Slemr F. The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS). Appl Phys B. 1993;57(2):131-139. https://doi.org/10.1007/BF00425997
Griffith DWT, Parkes SD, Haverd V, Paton-Walsh C, Wilson SR. Absolute calibration of the intramolecular site preference of 15N fractionation in tropospheric N2O by FT-IR spectroscopy. Anal Chem. 2009;81(6):2227-2234. https://doi.org/10.1021/ac802371c
Flores E, Viallon J, Moussay P, Griffith DWT, Wielgosz RI. Calibration strategies for FT-IR and other isotope ratio infrared spectrometer instruments for accurate δ13C and δ18O measurements of CO2 in air. Anal Chem. 2017;89(6):3648-3655. https://doi.org/10.1021/acs.analchem.6b05063
Ostrom NE, Gandhi H, Coplen TB, et al. Preliminary assessment of stable nitrogen and oxygen isotopic composition of USGS51 and USGS52 nitrous oxide reference gases and perspectives on calibration needs. Rapid Commun Mass Spectrom. 2018;32(15):1207-1214. https://doi.org/10.1002/rcm.8157
Browaeys J. Linear fit with both uncertainties in x and in y. 2019. https://www.mathworks.com/matlabcentral/fileexchange/45711-linear-fit-with-both-uncertainties-in-x-and-in-y. Accessed December 13, 2019.
Winter ERS. The decomposition of nitrous oxide on metallic oxides part II. J Catal. 1970;19(1):32-40. https://doi.org/10.1016/0021-9517(70)90293-9
Winter ERS. The decomposition of N2O on oxide catalysts. J Catal. 1974;34(3):431-439. https://doi.org/10.1016/0021-9517(74)90056-6
Mohn J, Gutjahr W, Toyoda S, et al. Reassessment of the NH4NO3 thermal decomposition technique for calibration of the N2O isotopic composition. Rapid Commun Mass Spectrom. 2016;30(23):2487-2496. https://doi.org/10.1002/rcm.7736
Brenninkmeijer CAM, Röckmann T. Mass spectrometry of the intramolecular nitrogen isotope distribution of environmental nitrous oxide using fragment-ion analysis. Rapid Commun Mass Spectrom. 1999;13(20):2028-2033. https://doi.org/10.1002/(SICI)1097-0231(19991030)13:20%3C;2028::AID-RCM751%3E;3.0.CO;2-J
Mohn J, Guggenheim C, Tuzson B, et al. A liquid nitrogen-free preconcentration unit for measurements of ambient N2O isotopomers by QCLAS. Atmos Meas Tech. 2010;3(3):609-618. https://doi.org/10.5194/amt-3-609-2010