Divergent and linked selection shape patterns of genomic differentiation between European and North American Atlantic salmon (Salmo salar).


Journal

Molecular ecology
ISSN: 1365-294X
Titre abrégé: Mol Ecol
Pays: England
ID NLM: 9214478

Informations de publication

Date de publication:
06 2020
Historique:
received: 11 04 2019
revised: 17 04 2020
accepted: 11 05 2020
pubmed: 21 5 2020
medline: 5 6 2021
entrez: 21 5 2020
Statut: ppublish

Résumé

As populations diverge many processes can shape genomic patterns of differentiation. Regions of high differentiation can arise due to divergent selection acting on selected loci, genetic hitchhiking of nearby loci, or through repeated selection against deleterious alleles (linked background selection); this divergence may then be further elevated in regions of reduced recombination. Atlantic salmon (Salmo salar) from Europe and North America diverged >600,000 years ago and despite some evidence of secondary contact, the majority of genetic data indicate substantial divergence between lineages. This deep divergence with potential gene flow provides an opportunity to investigate the role of different mechanisms that shape the genomic landscape during early speciation. Here, using 184,295 single nucleotide polymorphisms (SNPs) and 80 populations, we investigate the genomic landscape of differentiation across the Atlantic Ocean with a focus on highly differentiated regions and the processes shaping them. We found evidence of high (mean F

Identifiants

pubmed: 32432380
doi: 10.1111/mec.15480
doi:

Banques de données

Dryad
['10.5061/dryad.hdr7sqvfc']

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2160-2175

Informations de copyright

© 2020 John Wiley & Sons Ltd.

Références

Abe, T., Minowa, Y., & Kudo, H. (2018). Molecular characterization and gene expression of synaptosome-associated protein-25 (SNAP-25) in the brain during both seaward and homeward migrations of chum salmon Oncorhynchus keta. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 217, 17-25. https://doi.org/10.1016/j.cbpa.2017.12.006
Alexa, A., & Rahnenfuhrer, J. (2016). topGO: Enrichment analysis for Gene Ontology. R package version 2.28.0.
Allendorf, F., & Thorgaard, G. H. (1984). Tetraploidy and evolution of salmonid fishes. In B. Turner (Ed.), Evolutionary genetics of fishes (pp. 1-53). New York, NY: Plenum Press.
Antonucci, F., Corradini, I., Fossati, G., Tomasoni, R., Menna, E., & Matteoli, M. (2016). SNAP-25, a known presynaptic protein with emerging postsynaptic functions. Frontiers in Synaptic Neuroscience, 8, 7. https://doi.org/10.3389/fnsyn.2016.00007
Barson, N. J., Aykanat, T., Hindar, K., Baranski, M., Bolstad, G. H., Fiske, P., … Primmer, C. R. (2015). Sex-dependent dominance at a single locus maintains variation in age at maturity in salmon. Nature, 528, 405-408. https://doi.org/10.1038/nature16062
Bartholome, O., Van den Ackerveken, P., Sánchez Gil, J., de la Brassinne Bonardeaux, O., Leprince, P., Franzen, R., & Rogister, B. (2017). Puzzling out synaptic vesicle 2 family members functions. Frontiers in Molecular Neuroscience, 10, 148. https://doi.org/10.3389/fnmol.2017.00148
Berdahl, A., Westley, P. A., Levin, S. A., Couzin, I. D., & Quinn, T. P. (2016). A collective navigation hypothesis for homeward migration in anadromous salmonids. Fish and Fisheries, 17, 525-542. https://doi.org/10.1111/faf.12084
Booker, T. R., Yeaman, S., & Whitlock, M. (2020). Variation in recombination rate affects detection of FST outliers under neutrality. BioRxiv.
Boulding, E. G., Ang, K. P., Elliott, J., Powell, F., & Schaeffer, L. R. (2019). Differences in genetic architecture between continents at a major locus previously associated with sea age at sexual maturity in European Atlantic salmon. Aquaculture, 500, 670-678.
Bourret, V., Kent, M. P., Primmer, C. R., Vasemägi, A., Karlsson, S., Hindar, K., … Lien, S. (2013). SNP-array reveals genome-wide patterns of geographical and potential adaptive divergence across the natural range of Atlantic salmon (Salmo salar). Molecular Ecology, 22, 532-551.
Brenna-Hansen, S., Li, J., Kent, M. P., Boulding, E. G., Dominik, S., Davidson, W. S., & Lien, S. (2012). Chromosomal differences between European and North American Atlantic salmon discovered by linkage mapping and supported by fluorescence in situ hybridization analysis. BMC Genomics, 13, 432. https://doi.org/10.1186/1471-2164-13-432
Bryant, H. J., Chung, D. J., & Schulte, P. M. (2018). Subspecies differences in thermal acclimation of mitochondrial function and the role of uncoupling proteins in killifish. Journal of Experimental Biology, 221(24), jeb186320. https://doi.org/10.1242/jeb.186320
Burri, R., Nater, A., Kawakami, T., Mugal, C. F., Olason, P. I., Smeds, L., … Garamszegi, L. Z. (2015). Linked selection and recombination rate variation drive the evolution of the genomic landscape of differentiation across the speciation continuum of Ficedula flycatchers. Genome Research, 25, 1-10.
Cauwelier, E., Gilbey, J., Jones, C. S., Noble, L. R., & Verspoor, E. (2012). Asymmetrical viability in backcrosses between highly divergent populations of Atlantic salmon (Salmo salar): Implications for conservation. Conservation Genetics, 13, 1665-1669. https://doi.org/10.1007/s10592-012-0400-8
Claytor, R. R., MacCrimmon, H. R., & Gots, B. L. (1991). Continental and ecological variance components of European and North American Atlantic salmon (Salmo salar) phenotypes. Biological Journal of the Linnean Society, 44, 203-229. https://doi.org/10.1111/j.1095-8312.1991.tb00617.x
Cohen, C. J., Shieh, J. T., Pickles, R. J., Okegawa, T., Hsieh, J.-T., & Bergelson, J. M. (2001). The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proceedings of the National Academy of Sciences, 98, 15191-15196. https://doi.org/10.1073/pnas.261452898
Cruickshank, T. E., & Hahn, M. W. (2014). Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Molecular Ecology, 23, 3133-3157. https://doi.org/10.1111/mec.12796
Dadswell, M., Spares, A., Reader, J., & Stokesbury, M. (2010). The North Atlantic subpolar gyre and the marine migration of Atlantic salmon Salmo salar: The ‘Merry-Go-Round’ hypothesis. Journal of Fish Biology, 77, 435-467. https://doi.org/10.1111/j.1095-8649.2010.02673.x
Davidson, W. S., Birt, T. P., & Green, J. M. (1989). A review of genetic variation in Atlantic salmon, Salmo salar L., and its importance for stock identification, enhancement programmes and aquaculture. Journal of Fish Biology, 34, 547-560. https://doi.org/10.1111/j.1095-8649.1989.tb03334.x
DFO (2018). Review of the science associated with the inner Bay of Fundy Atlantic salmon live gene bank and supplementation programs.
Dobzhansky, T. G. (1937). Genetics and the Origin of Species, Vol. 11. New York, NY: Columbia University Press.
Feder, J. L., Egan, S. P., & Nosil, P. (2012). The genomics of speciation-with-gene-flow. Trends in Genetics, 28, 342-350. https://doi.org/10.1016/j.tig.2012.03.009
Fitak, R. R., Wheeler, B. R., Ernst, D. A., Lohmann, K. J., & Johnsen, S. (2017). Candidate genes mediating magnetoreception in rainbow trout (Oncorhynchus mykiss). Biology Letters, 13, 20170142.
Fuller, Z. L., Leonard, C. J., Young, R. E., Schaeffer, S. W., & Phadnis, N. (2018). Ancestral polymorphisms explain the role of chromosomal inversions in speciation. PLOS Genetics, 14, e1007526. https://doi.org/10.1371/journal.pgen.1007526
Gaudet, P., & Dessimoz, C. (2017). Gene ontology: Pitfalls, biases, and remedies. In C. Dessimoz, & N. Škunca (Eds.), The gene ontology handbook (pp. 189-205). New York, NY: Humana Press.
Gilbey, J., Wennevik, V., Bradbury, I. R., Fiske, P., Hansen, L. P., Jacobsen, J. A., & Potter, T. (2017). Genetic stock identification of Atlantic salmon caught in the Faroese fishery. Fisheries Research, 187, 110-119. https://doi.org/10.1016/j.fishres.2016.11.020
Gruchy, C. G. (1971). Salmon nomenclature. Nature, 234, 360. https://doi.org/10.1038/234360a0
Jeffery, N. W., Stanley, R. R. E., Wringe, B. F., Guijarro-Sabaniel, J., Bourret, V., Bernatchez, L., … Bradbury, I. R. (2017). Range-wide parallel climate-associated genomic clines in Atlantic salmon. Royal Society Open Science, 4, 171394. https://doi.org/10.1098/rsos.171394
Johnsen, B. O., & Jenser, A. J. (1991). The gyrodactylus story in Norway. Aquaculture, 98, 289-302. https://doi.org/10.1016/0044-8486(91)90393-L
Jørgensen, J. R., Thompson, L., Fjord-Larsen, L., Krabbe, C., Torp, M., Kalkkinen, N., … Wahlberg, L. (2009). Characterization of Meteorin-an evolutionary conserved neurotrophic factor. Journal of Molecular Neuroscience, 39, 104-116. https://doi.org/10.1007/s12031-009-9189-4
Kijas, J., McWilliam, S., Naval Sanchez, M., Kube, P., King, H., Evans, B., … Verbyla, K. (2018). Evolution of sex determination loci in Atlantic salmon. Scientific Reports, 8, 5664. https://doi.org/10.1038/s41598-018-23984-1
King, T., Kalinowski, S. T., Schill, W., Spidle, A., & Lubinski, B. (2001). Population structure of Atlantic salmon (Salmo salar L.): A range-wide perspective from microsatellite DNA variation. Molecular Ecology, 10, 807-821. https://doi.org/10.1046/j.1365-294X.2001.01231.x
King, T. L., Verspoor, E., Spidle, A. P., Gross, R., Phillips, R. B., Koljonen, M. L., … Morrison, C. L. (2007). Biodiversity and population structure. In E. Verspoor, L. Stradmeyer, & J. Nielsen (Eds.), The atlantic salmon: Genetics, conservation and management (pp. 117-166). Oxford, UK: Blackwell Publishing Ltd.
Korenbrot, J. I., Mehta, M., Tserentsoodol, N., Postlethwait, J. H., & Rebrik, T. I. (2013). EML1 (CNG-modulin) controls light sensitivity in darkness and under continuous illumination in zebrafish retinal cone photoreceptors. Journal of Neuroscience, 33, 17763-17776. https://doi.org/10.1523/JNEUROSCI.2659-13.2013
Lehnert, S. J., Bentzen, P., Kess, T., Lien, S., Horne, J. B., Clement, M., & Bradbury, I. R. (2019). Chromosome polymorphisms track trans-Atlantic divergence and secondary contact in Atlantic salmon. Molecular Ecology, 28, 2074-2087. https://doi.org/10.1111/mec.15065
Lewontin, R. C., & Krakauer, J. (1973). Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics, 74, 175-195.
Lien, S., Gidskehaug, L., Moen, T., Hayes, B. J., Berg, P. R., Davidson, W. S., … Kent, M. P. (2011). A dense SNP-based linkage map for Atlantic salmon (Salmo salar) reveals extended chromosome homeologies and striking differences in sex-specific recombination patterns. BMC Genomics, 12, 615. https://doi.org/10.1186/1471-2164-12-615
Lohmann, K. J., Putman, N. F., & Lohmann, C. M. (2008). Geomagnetic imprinting: A unifying hypothesis of long-distance natal homing in salmon and sea turtles. Proceedings of the National Academy of Sciences, 105, 19096-19101. https://doi.org/10.1073/pnas.0801859105
López, M., Benestan, L., Moore, J. S., Perrier, C., Gilbey, J., Di Genova, A., Correa, K. (2018). Comparing genomic signatures of domestication in two Atlantic salmon (Salmo salar L) populations with different geographical origins. Evolutionary Applications, 12(1), 137-156.
Lubieniecki, K. P., Lin, S., Cabana, E. I., Li, J., Lai, Y. Y., & Davidson, W. S. (2015). Genomic instability of the sex-determining locus in Atlantic Salmon (Salmo salar). G3: Genes, Genomes, Genetics, 5, 2514-2522.
Luu, K., Bazin, E., & Blum, M. G. (2017). pcadapt: An R package to perform genome scans for selection based on principal component analysis. Molecular Ecology Resources, 17, 67-77.
Makhrov, A., Verspoor, E., Artamonova, V., & O'Sullivan, M. (2005). Atlantic salmon colonization of the Russian Arctic coast: Pioneers from North America. Journal of Fish Biology, 67, 68-79. https://doi.org/10.1111/j.0022-1112.2005.00840.x
Martin, S. H., Davey, J., Salazar, C., & Jiggins, C. (2018). Recombination rate variation shapes barriers to introgression across butterfly genomes. bioRxiv, 297531.
Martin, S. H., & Van Belleghem, S. M. (2017). Exploring evolutionary relationships across the genome using topology weighting. Genetics, 206, 429-438. https://doi.org/10.1534/genetics.116.194720
Matthey-Doret, R., & Whitlock, M. C. (2018). Background selection and the statistics of population differentiation: Consequences for detecting local adaptation. BioRxiv, 326256.
Maynard Smith, J., & Haigh, J. (1974). The hitch-hiking effect of a favourable gene. Genetics Research, 23, 23-35. https://doi.org/10.1017/S0016672300014634
Nielsen, R., Williamson, S., Kim, Y., Hubisz, M. J., Clark, A. G., & Bustamante, C. (2005). Genomic scans for selective sweeps using SNP data. Genome Research, 15, 1566-1575. https://doi.org/10.1101/gr.4252305
Noor, M. A. F., & Bennett, S. M. (2009). Islands of speciation or mirages in the desert? Examining the role of restricted recombination in maintaining species. Heredity, 103, 439-444. https://doi.org/10.1038/hdy.2009.151
Nosil, P., Funk, D. J., & Ortiz-Barrientos, D. (2009). Divergent selection and heterogeneous genomic divergence. Molecular Ecology, 18, 375-402. https://doi.org/10.1111/j.1365-294X.2008.03946.x
Nyman, O., & Pippy, J. (1972). Differences in Atlantic salmon, Salmo salar, from North America and Europe. Journal of the Fisheries Board of Canada, 29, 179-185.
O'Reilly, P. T., Carr, J. W., Whoriskey, F. G., & Verspoor, E. (2006). Detection of European ancestry in escaped farmed Atlantic salmon, Salmo salar l., in the Magaguadavic River and Chamcook Stream, New Brunswick, Canada. ICES Journal of Marine Science, 63, 1256-1262. https://doi.org/10.1016/j.icesjms.2006.04.013
Pavlidis, P., Živković, D., Stamatakis, A., & Alachiotis, N. (2013). SweeD: Likelihood-based detection of selective sweeps in thousands of genomes. Molecular Biology and Evolution, 30, 2224-2234. https://doi.org/10.1093/molbev/mst112
Payne, R. H., Child, A. R., & Forrest, A. (1971). Geographical variation in the Atlantic salmon. Nature, 231, 250-252. https://doi.org/10.1038/231250a0
Pedersen, S., Liu, L., Glebe, B., Leadbeater, S., Lien, S., & Boulding, E. G. (2017). Mapping of quantitative trait loci associated with size, shape, and parr mark traits using first-and second-generation backcrosses between European and North American Atlantic salmon (Salmo salar). Genome, 61, 33-42.
Pfeifer, B., Wittelsbürger, U., Ramos-Onsins, S. E., & Lercher, M. J. (2014). PopGenome: An efficient Swiss army knife for population genomic analyses in R. Molecular Biology and Evolution, 31, 1929-1936. https://doi.org/10.1093/molbev/msu136
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., … Sham, P. C. (2007). PLINK: A tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 81, 559-575. https://doi.org/10.1086/519795
Putman, N. F., Scanlan, M. M., Billman, E. J., O’Neil, J. P., Couture, R. B., Quinn, T. P., … Noakes, D. L. G. (2014). An inherited magnetic map guides ocean navigation in juvenile Pacific salmon. Current Biology, 24, 446-450. https://doi.org/10.1016/j.cub.2014.01.017
Quinlan, A. R., & Hall, I. M. (2010). BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics, 26, 841-842. https://doi.org/10.1093/bioinformatics/btq033
Ramírez-Soriano, A., & Nielsen, R. (2009). Correcting estimators of θ and Tajima's D for ascertainment biases caused by the single-nucleotide polymorphism discovery process. Genetics, 181, 701-710.
Reddin, D. G., Hansen, L. P., Bakkestuen, V., Russell, I., White, J., Potter, E. C. E.…Amiro, P. (2012). Distribution and biological characteristics of Atlantic salmon (Salmo salar) at Greenland based on the analysis of historical tag recoveries. ICES Journal of Marine Science, 69, 1589-1597. https://doi.org/10.1093/icesjms/fss087
Reddin, D., Stansbury, D., & Short, P. (1988). Continent of origin of Atlantic salmon (Salmo salar L.) at West Greenland. ICES Journal of Marine Science, 44, 180-188. https://doi.org/10.1093/icesjms/44.2.180
Rezvoy, C., Charif, D., Guéguen, L., & Marais, G. A. B. (2007). MareyMap: an R-based tool with graphical inter- face for estimating recombination rates. Bioinformatics, 23, 2188-2189.
Rougemont, Q., & Bernatchez, L. (2018). Reconstructing the demographic history of Atlantic salmon (Salmo salar) across its distribution range using approximate Bayesian computations. Evolution, 72, 1261-1277.
Samy, J. K. A., Mulugeta, T. D., Nome, T., Sandve, S. R., Grammes, F., Kent, M. P., … Våge, D. I. (2017). SalmoBase: An integrated molecular data resource for Salmonid species. BMC Genomics, 18, 482. https://doi.org/10.1186/s12864-017-3877-1
Stankowski, S., Chase, M. A., Fuiten, A. M., Ralph, P. L., & Streisfeld, M. A. (2018). The tempo of linked selection: Emergence of a heterogeneous genomic landscape during a recent radiation of monkeyflowers. BioRxiv, 342352.
Stanley, R. R., Jeffery, N. W., Wringe, B. F., DiBacco, C., & Bradbury, I. R. (2017). Genepopedit: A simple and flexible tool for manipulating multilocus molecular data in R. Molecular Ecology Resources, 17, 12-18. https://doi.org/10.1111/1755-0998.12569
Storey, J. D., Bass, A. J., Dabney, A., & Robinson, D. (2015). qvalue: Q-value estimation for false discovery rate control. (R package 2.10.0). Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://github.com/jdstorey/qvalue
Storey, J. D., & Tibshirani, R. (2003). Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences, 100, 9440-9445. https://doi.org/10.1073/pnas.1530509100
Sylvester, E. V. A., Beiko, R. G., Bentzen, P., Paterson, I., Horne, J. B., Watson, B., … Bradbury, I. R. (2018). Environmental extremes drive population structure at the northern range limit of Atlantic salmon in North America. Molecular Ecology, 27, 4026-4040. https://doi.org/10.1111/mec.14849
Sylvester, E. V., Bentzen, P., Bradbury, I. R., Clément, M., Pearce, J., Horne, J., & Beiko, R. G. (2018). Applications of random forest feature selection for fine-scale genetic population assignment. Evolutionary Applications, 11, 153-165. https://doi.org/10.1111/eva.12524
Turner, S. D. (2014). qqman: An R package for visualizing GWAS results using QQ and manhattan plots. BioRxiv
Verspoor, E., Beardmore, J. A., Consuegra, S., Garcia de Leaniz, C., Hindar, K., Jordan, W. C., … Cross, T. F. (2005). Population structure in the Atlantic salmon: Insights from 40 years of research into genetic protein variation. Journal of Fish Biology, 67, 3-54. https://doi.org/10.1111/j.0022-1112.2005.00838.x
Verspoor, E., McGinnity, P., Bradbury, I. R., & Glebe, B. (2015). The potential direct and indirect genetic consequences for native Newfoundland Atlantic salmon from interbreeding with European-origin farm escapes. Fisheries and Oceans Canada, Ecosystems and Oceans Science.
Via, S. (2012). Divergence hitchhiking and the spread of genomic isolation during ecological speciation-with-gene-flow. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 367, 451-460. https://doi.org/10.1098/rstb.2011.0260
Wang, J., Street, N. R., Scofield, D. G., & Ingvarsson, P. K. (2016). Variation in linked selection and recombination drive genomic divergence during allopatric speciation of European and American aspens. Molecular Biology and Evolution, 33, 1754-1767. https://doi.org/10.1093/molbev/msw051
Warnes, G. R., Bolker, B., Bonebakker, L., Gentleman, R., Liaw, W. H. A., Lumley, T., … Venables, B. (2016). gplots: Various R programming tools for plotting data (R package 3.0.1). Vienna, Austria: R Foundation for Statistical Computing.
Wellband, K., Mérot, C., Linnansaari, T., Elliott, J., Curry, R. A., & Bernatchez, L. (2019). Chromosomal fusion and life history-associated genomic variation contribute to within-river local adaptation of Atlantic salmon. Molecular Ecology, 28(6), 1439-1459. https://doi.org/10.1111/mec.14965
Williamson, S. H., Hubisz, M. J., Clark, A. G., Payseur, B. A., Bustamante, C. D., & Nielsen, R. (2007). Localizing recent adaptive evolution in the human genome. PLOS Genetics, 3, e90. https://doi.org/10.1371/journal.pgen.0030090
Willoughby, J. R., Harder, A. M., Tennessen, J. A., Scribner, K. T., & Christie, M. R. (2018). Rapid genetic adaptation to a novel environment despite a genome-wide reduction in genetic diversity. Molecular Ecology, 27, 4041-4051. https://doi.org/10.1111/mec.14726
Wolf, J. B. W., & Ellegren, H. (2017). Making sense of genomic islands of differentiation in light of speciation. Nature Reviews Genetics, 18, 87-100. https://doi.org/10.1038/nrg.2016.133
Wu, C. I. (2001). The genic view of the process of speciation. Journal of Evolutionary Biology, 14, 851-865. https://doi.org/10.1046/j.1420-9101.2001.00335.x
Zueva, K. J., Lumme, J., Veselov, A. E., Kent, M. P., & Primmer, C. R. (2018). Genomic signatures of parasite-driven natural selection in north European Atlantic salmon (Salmo salar). Marine Genomics, 39, 26-38. https://doi.org/10.1016/j.margen.2018.01.001

Auteurs

Sarah J Lehnert (SJ)

Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John's, NL, Canada.

Tony Kess (T)

Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John's, NL, Canada.

Paul Bentzen (P)

Department of Biology, Dalhousie University, Halifax, NS, Canada.

Marie Clément (M)

Centre for Fisheries Ecosystems Research, Fisheries and Marine Institute, Memorial University of Newfoundland, St. John's, NL, Canada.
Labrador Institute, Memorial University of Newfoundland, Happy Valley-Goose Bay, NL, Canada.

Ian R Bradbury (IR)

Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John's, NL, Canada.
Department of Biology, Dalhousie University, Halifax, NS, Canada.

Articles similaires

Humans United States Aged Cross-Sectional Studies Medicare Part C
Humans Emergency Service, Hospital Child Child, Preschool Infant
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell

Classifications MeSH