Use-dependent plasticity explains aftereffects in visually guided locomotor learning of a novel step length asymmetry.
activity-dependent plasticity
locomotion
motor adaptation
motor learning
repetition
use-dependent learning
Journal
Journal of neurophysiology
ISSN: 1522-1598
Titre abrégé: J Neurophysiol
Pays: United States
ID NLM: 0375404
Informations de publication
Date de publication:
01 07 2020
01 07 2020
Historique:
pubmed:
21
5
2020
medline:
20
7
2021
entrez:
21
5
2020
Statut:
ppublish
Résumé
Studies of upper extremity reaching show that use-dependent plasticity, or learning from repetition, plays an important role in shaping motor behaviors. Yet the impact of repetition on locomotor learning is unclear, despite the fact that gait is developed and practiced over millions of repetitions. To test whether repetition alone can induce storage of a novel walking pattern, we instructed two groups of young healthy subjects to learn an asymmetric walking pattern through two distinct learning paradigms. The first group learned a new pattern through an established visual distortion paradigm, which provided both sensory prediction error and repetition of movement patterns to induce walking aftereffects, and the second received veridical feedback with a target change, which provided only repetition (use-dependent plasticity) to induce aftereffects. When feedback was removed, both groups demonstrated aftereffects in the primary outcome, step asymmetry index. Surprisingly, despite the different task demands, both groups produced similar aftereffect magnitudes, which also had similar rates of decay, suggesting that the addition of sensory prediction errors did not improve storage of learning beyond that induced by the use-dependent process alone. To further characterize the use-dependent process, we conducted a second experiment to quantify aftereffect size in a third group who practiced double the asymmetry magnitude. This new group showed a proportionately greater magnitude of the use-dependent aftereffect. Together, these findings show that the primary driver of storage of a new step length asymmetry during visually guided locomotor learning is repetition, not sensory prediction error, and this effect scales with the learning magnitude.
Identifiants
pubmed: 32432516
doi: 10.1152/jn.00083.2020
pmc: PMC7474450
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
32-39Subventions
Organisme : HHS | NIH | National Center for Advancing Translational Sciences (NCATS)
ID : S10RR028114
Pays : International
Organisme : HHS | NIH | National Institute of General Medical Sciences (NIGMS)
ID : P20GM103446
Pays : International
Organisme : NCRR NIH HHS
ID : S10 RR028114
Pays : United States
Organisme : NINDS NIH HHS
ID : F31 NS111806
Pays : United States
Organisme : HHS | NIH | National Institute of Child Health and Human Development (NICHD)
ID : K12HD055931
Pays : International
Organisme : NICHD NIH HHS
ID : K12 HD055931
Pays : United States
Organisme : NIGMS NIH HHS
ID : P20 GM103446
Pays : United States
Références
J Neurophysiol. 2013 Apr;109(8):2216-27
pubmed: 23365187
Front Hum Neurosci. 2013 Jun 28;7:307
pubmed: 23874277
J Neurophysiol. 2010 Apr;103(4):2234-54
pubmed: 20386041
Clin Rehabil. 2018 Feb;32(2):161-172
pubmed: 28750549
Med Sci Sports Exerc. 2014 Jul;46(7):1392-9
pubmed: 24389526
J Neurophysiol. 2013 Aug;110(4):916-25
pubmed: 23741038
J Neurophysiol. 2016 May 1;115(5):2692-700
pubmed: 26961100
Nat Neurosci. 2008 Dec;11(12):1454-61
pubmed: 19011624
J Neurosci. 2011 Oct 19;31(42):15136-43
pubmed: 22016547
J Neurophysiol. 2009 Feb;101(2):655-64
pubmed: 19019979
J Neurosci. 2011 Jul 6;31(27):10050-9
pubmed: 21734297
Brain. 1996 Aug;119 ( Pt 4):1183-98
pubmed: 8813282
Hum Mov Sci. 2019 May 4;66:186-197
pubmed: 31063927
J Neuroeng Rehabil. 2014 Apr 28;11:74
pubmed: 24775424
IEEE Trans Biomed Eng. 2015 Sep;62(9):2244-50
pubmed: 25861084
Neurorehabil Neural Repair. 2018 Sep;32(9):810-820
pubmed: 30086670
J Neurophysiol. 2015 Jun 1;113(10):3836-49
pubmed: 25855690
J Physiol. 1999 Jul 15;518 ( Pt 2):595-603
pubmed: 10381604
J Neurosci. 2013 Apr 10;33(15):6552-6
pubmed: 23575852
Trends Cogn Sci. 1998 Sep 1;2(9):338-47
pubmed: 21227230
Cereb Cortex. 2011 Jul;21(7):1475-84
pubmed: 21131448
Sci Rep. 2018 Jan 8;8(1):94
pubmed: 29311681
J Neurophysiol. 2017 Feb 1;117(2):480-491
pubmed: 27760813
J Neurophysiol. 2017 Oct 1;118(4):2089-2102
pubmed: 28701533
Exp Brain Res. 2012 May;218(3):495-502
pubmed: 22411579
J Neurosci. 1994 May;14(5 Pt 2):3208-24
pubmed: 8182467
J Neurosci. 2006 Apr 5;26(14):3642-5
pubmed: 16597717
J Neurophysiol. 2015 Jun 1;113(10):3519-30
pubmed: 25855699
Sci Rep. 2019 Mar 18;9(1):4693
pubmed: 30886202
J Neurosci. 2006 Sep 6;26(36):9107-16
pubmed: 16957067
J Neurol Phys Ther. 2020 Jan;44(1):49-100
pubmed: 31834165
Neurorehabil Neural Repair. 2015 Nov-Dec;29(10):923-32
pubmed: 25721233
Front Comput Neurosci. 2013 Jul 11;7:83
pubmed: 23874287
eNeuro. 2019 May 1;6(2):
pubmed: 31043463
PLoS Comput Biol. 2011 Mar;7(3):e1001096
pubmed: 21390266
Hum Mov Sci. 2015 Aug;42:212-24
pubmed: 26066783
J Neurosci. 2020 Apr 8;40(15):3075-3088
pubmed: 32029533
Nat Neurosci. 1999 Nov;2(11):1026-31
pubmed: 10526344
J Cogn Neurosci. 2017 Jun;29(6):1061-1074
pubmed: 28195523
J Neurosci. 2010 Apr 14;30(15):5159-66
pubmed: 20392938
J Neurophysiol. 2018 Oct 1;120(4):1923-1931
pubmed: 30089023
J Neurophysiol. 2016 Mar;115(3):1499-511
pubmed: 26792878
J Neurophysiol. 2016 May 1;115(5):2341-8
pubmed: 26912598
J Neurophysiol. 2005 Oct;94(4):2403-15
pubmed: 15958603
J Neurophysiol. 1998 Feb;79(2):1117-23
pubmed: 9463469
Elife. 2019 Apr 29;8:
pubmed: 31033439
J Neurophysiol. 2006 Feb;95(2):766-73
pubmed: 16424453
J Neurophysiol. 2007 Jul;98(1):54-62
pubmed: 17507504
Neurorehabil Neural Repair. 2016 Jun;30(5):440-50
pubmed: 26338433