Associations Among Eccentric Hamstrings Strength, Hamstrings Stiffness, and Jump-Landing Biomechanics.
anterior cruciate ligament
kinematics
kinetics
knee
Journal
Journal of athletic training
ISSN: 1938-162X
Titre abrégé: J Athl Train
Pays: United States
ID NLM: 9301647
Informations de publication
Date de publication:
01 Jul 2020
01 Jul 2020
Historique:
pubmed:
21
5
2020
medline:
22
12
2020
entrez:
21
5
2020
Statut:
ppublish
Résumé
Anterior cruciate ligament (ACL) injury risk can be assessed from landing biomechanics. Greater hamstrings stiffness is associated with a landing-biomechanics profile consistent with less ACL loading but is difficult to assess in the clinical setting. Eccentric hamstrings strength can be easily evaluated by clinicians and may provide a surrogate measure for hamstrings stiffness. To examine associations among eccentric hamstrings strength, hamstrings stiffness, and landing biomechanics linked to ACL injury risk. Cross-sectional study. Research laboratory. A total of 34 uninjured, physically active participants (22 women, 12 men; age = 20.2 ± 1.6 years, height = 171.5 ± 9.7 cm, mass = 67.1 ± 12.7 kg). We collected eccentric hamstrings strength, active hamstrings stiffness, and double- and single-legged landing biomechanics during a single session. Bivariate associations were conducted between eccentric hamstrings strength and hamstrings stiffness, vertical ground reaction force, internal knee-extension moment, internal knee-varus moment, anterior tibial shear force, knee sagittal-plane angle at initial ground contact, peak knee-flexion angle, knee frontal-plane angle at initial ground contact, peak knee-valgus angle, and knee-flexion displacement using Pearson product moment correlations or Spearman rank-order correlations. We observed no association between hamstrings stiffness and eccentric hamstrings strength (r = 0.029, P = .44). We also found no association between hamstrings stiffness and landing biomechanics. However, greater peak eccentric strength was associated with less vertical ground reaction force in both the double-legged (r = -0.331, P = .03) and single-legged (r = -0.418, P = .01) landing conditions and with less internal knee-varus moment in the single-legged landing condition (r = -0.326, P = .04). Eccentric hamstrings strength was associated with less vertical ground reaction force during both landing tasks and less internal knee-varus moment during the single-legged landing but was not an acceptable clinical estimate of active hamstrings stiffness.
Identifiants
pubmed: 32432902
pii: 436337
doi: 10.4085/1062-6050-151-19
pmc: PMC7384474
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
717-723Informations de copyright
© by the National Athletic Trainers' Association, Inc.
Références
Res Sports Med. 2020 Jan-Mar;28(1):1-14
pubmed: 31352787
J Orthop Sports Phys Ther. 2019 Feb;49(2):43-54
pubmed: 30501385
Am J Sports Med. 2005 Apr;33(4):492-501
pubmed: 15722287
J Bone Joint Surg Am. 2013 Oct 2;95(19):1751-9
pubmed: 24088967
Am J Sports Med. 2014 Oct;42(10):2363-70
pubmed: 25086064
Clin Biomech (Bristol, Avon). 2011 Mar;26(3):278-83
pubmed: 21059479
J Biomech. 1990;23(6):617-21
pubmed: 2341423
Am J Sports Med. 2009 Oct;37(10):1996-2002
pubmed: 19726623
Acta Orthop. 2007 Jun;78(3):355-60
pubmed: 17611849
J Biomech. 1992 Aug;25(8):891-901
pubmed: 1639833
Exp Gerontol. 2010 Jun;45(6):400-9
pubmed: 20303404
Arthritis Rheum. 2004 Oct;50(10):3145-52
pubmed: 15476248
J Orthop Sports Phys Ther. 2008 Aug;38(8):457-64
pubmed: 18678956
J Athl Train. 2014 Nov-Dec;49(6):806-19
pubmed: 25232663
Knee Surg Sports Traumatol Arthrosc. 2003 Sep;11(5):307-11
pubmed: 14523613
Orthopedics. 2000 Jun;23(6):573-8
pubmed: 10875418
J Sport Rehabil. 2010 Feb;19(1):57-70
pubmed: 20231745
Knee. 2010 Aug;17(4):291-5
pubmed: 20303276
J Electromyogr Kinesiol. 2013 Apr;23(2):411-5
pubmed: 23246034
Am J Sports Med. 2017 Feb;45(2):386-393
pubmed: 27637264
Comput Methods Biomech Biomed Engin. 2017 Oct;20(13):1394-1402
pubmed: 28830232
J Orthop Res. 1995 Nov;13(6):930-5
pubmed: 8544031
Clin Biomech (Bristol, Avon). 2009 Jan;24(1):65-70
pubmed: 19026473
J Electromyogr Kinesiol. 2014 Feb;24(1):98-103
pubmed: 24268874
J Biomech. 1990;23(4):343-8
pubmed: 2335532
J Electromyogr Kinesiol. 2004 Dec;14(6):683-91
pubmed: 15491843
Am J Phys Anthropol. 1959 Dec;17(4):289-317
pubmed: 13815872
Phys Ther Sport. 2015 Feb;16(1):59-65
pubmed: 24913915
J Athl Train. 2013 Nov-Dec;48(6):764-72
pubmed: 24303987
Clin Biomech (Bristol, Avon). 1998 Mar;13(2):138-140
pubmed: 11415781
J Strength Cond Res. 2015 Jan;29(1):159-64
pubmed: 24978835
Br J Sports Med. 2006 Oct;40(10):850-2; discussion 852
pubmed: 16825267
Med Sci Sports Exerc. 2009 Apr;41(4):857-66
pubmed: 19300140
J Biomech. 1999 Apr;32(4):395-400
pubmed: 10213029
Appl Physiol Nutr Metab. 2015 Jan;40(1):87-95
pubmed: 25494973