Engineering bionic T cells: signal 1, signal 2, signal 3, reprogramming and the removal of inhibitory mechanisms.


Journal

Cellular & molecular immunology
ISSN: 2042-0226
Titre abrégé: Cell Mol Immunol
Pays: China
ID NLM: 101242872

Informations de publication

Date de publication:
06 2020
Historique:
received: 31 03 2020
accepted: 27 04 2020
revised: 24 04 2020
pubmed: 21 5 2020
medline: 29 7 2021
entrez: 21 5 2020
Statut: ppublish

Résumé

Gene engineering and combinatorial approaches with other cancer immunotherapy agents may confer capabilities enabling full tumor rejection by adoptive T cell therapy (ACT). The provision of proper costimulatory receptor activity and cytokine stimuli, along with the repression of inhibitory mechanisms, will conceivably make the most of these treatment strategies. In this sense, T cells can be genetically manipulated to become refractory to suppressive mechanisms and exhaustion, last longer and differentiate into memory T cells while endowed with the ability to traffic to malignant tissues. Their antitumor effects can be dramatically augmented with permanent or transient gene transfer maneuvers to express or delete/repress genes. A combination of such interventions seeks the creation of the ultimate bionic T cell, perfected to seek and destroy cancer cells upon systemic or local intratumor delivery.

Identifiants

pubmed: 32433539
doi: 10.1038/s41423-020-0464-1
pii: 10.1038/s41423-020-0464-1
pmc: PMC7264123
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

576-586

Références

Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).
pubmed: 29567705 doi: 10.1126/science.aar4060 pmcid: 29567705
Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015).
pubmed: 25838374 pmcid: 6295668 doi: 10.1126/science.aaa4967
Shimasaki, N., Jain, A. & Campana D. NK cells for cancer immunotherapy. Nat. Rev. Drug. Discov. https://doi.org/10.1038/s41573-019-0052-1 (2020).
pubmed: 31907401 doi: 10.1038/s41573-019-0052-1
Liu, E. et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. New Engl. J. Med 382, 545–553 (2020).
pubmed: 32023374 doi: 10.1056/NEJMoa1910607
Rosenberg, S. A. et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res 17, 4550–4557 (2011).
pubmed: 21498393 pmcid: 3131487 doi: 10.1158/1078-0432.CCR-11-0116
Andersen, R. et al. Long-Lasting complete responses in patients with metastatic melanoma after adoptive cell therapy with tumor-infiltrating lymphocytes and an attenuated il2 regimen. Clin. Cancer Res 22, 3734–3745 (2016).
pubmed: 27006492 doi: 10.1158/1078-0432.CCR-15-1879
June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. C. A. R. T cell immunotherapy for human cancer. Science 359, 1361–1365 (2018).
pubmed: 29567707 pmcid: 29567707 doi: 10.1126/science.aar6711
Pardoll, D. M. Building the bionic T cell. Nat. Med. 13, 1411–1413 (2007).
pubmed: 18064030 doi: 10.1038/nm1207-1411
Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).
doi: 10.1016/j.immuni.2013.07.012 pubmed: 23890059
Roberts, E. W. et al. Critical role for CD103(+)/CD141(+) dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell. 30, 324–336 (2016).
pubmed: 27424807 pmcid: 5374862 doi: 10.1016/j.ccell.2016.06.003
Jansen, C. S. et al. An intra-tumoral niche maintains and differentiates stem-like CD8 T cells. Nature 576, 465–470 (2019).
pubmed: 31827286 doi: 10.1038/s41586-019-1836-5
Simoni, Y. et al. Bystander CD8(+) T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557, 575–579 (2018).
pubmed: 29769722 doi: 10.1038/s41586-018-0130-2
Zajac, A. J. et al. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 188, 2205–2213 (1998).
pubmed: 9858507 pmcid: 2212420 doi: 10.1084/jem.188.12.2205
Zarour, H. M. Reversing T-cell dysfunction and exhaustion in cancer. Clin. Cancer Res. 22, 1856–1864 (2016).
pubmed: 27084739 pmcid: 4872712 doi: 10.1158/1078-0432.CCR-15-1849
Chauvin, J.-M. et al. TIGIT and PD-1 impair tumor antigen-specific CD8
pubmed: 25866972 pmcid: 4463210 doi: 10.1172/JCI80445
Li, X.-Y. et al. CD155 loss enhances tumor suppression via combined host and tumor-intrinsic mechanisms. J. Clin. Invest 128, 2613–2625 (2018).
pubmed: 29757192 pmcid: 5983325 doi: 10.1172/JCI98769
Wherry, E. J. T cell exhaustion. Nat. Immunol.12, 492–499 (2011).
pubmed: 21739672 doi: 10.1038/ni.2035
Joshi, N. S. & Kaech, S. M. Effector CD8 T cell development: a balancing act between memory cell potential and terminal differentiation. J. Immunol. 180, 1309–1315 (2008).
pubmed: 18209024 doi: 10.4049/jimmunol.180.3.1309
Mueller, S. N., Gebhardt, T., Carbone, F. R. & Heath, W. R. Memory T cell subsets, migration patterns, and tissue residence. Annu Rev. Immunol. 31, 137–161 (2013).
pubmed: 23215646 doi: 10.1146/annurev-immunol-032712-095954
Perez-Diez, A. et al. CD4 cells can be more efficient at tumor rejection than CD8 cells. Blood 109, 5346–5354 (2007).
pubmed: 17327412 pmcid: 1890845 doi: 10.1182/blood-2006-10-051318
Alspach, E. et al. MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature 574, 696–701 (2019).
pubmed: 31645760 pmcid: 6858572 doi: 10.1038/s41586-019-1671-8
Bennett, S. R. et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393, 478–480 (1998).
pubmed: 9624004 doi: 10.1038/30996
Schoenberger, S. P., Toes, R. E., van der Voort, E. I., Offringa, R. & Melief, C. J. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature393, 480–483 (1998).
pubmed: 9624005 doi: 10.1038/31002
Ahrends, T. et al. CD4+ T cell help confers a cytotoxic T cell effector program including coinhibitory receptor downregulation and increased tissue invasiveness. Immunity 47, 848–861.e5 (2017).
pubmed: 29126798 doi: 10.1016/j.immuni.2017.10.009
Hunder, N. N. et al. Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N Engl. J. Med 358, 2698–2703 (2008).
pubmed: 18565862 pmcid: 3277288 doi: 10.1056/NEJMoa0800251
Purwar, R. et al. Robust tumor immunity to melanoma mediated by interleukin-9-producing T cells. Nat. Med. 18, 1248–1253 (2012).
pubmed: 22772464 pmcid: 3518666 doi: 10.1038/nm.2856
Lu, Y. et al. Th9 cells represent a unique subset of CD4(+) T cells endowed with the ability to eradicate advanced tumors. Cancer Cell. 33, 1048–1060.e7 (2018).
pubmed: 29894691 pmcid: 6072282 doi: 10.1016/j.ccell.2018.05.004
Melero, I., Rouzaut, A., Motz, G. T. & Coukos, G. T-cell and NK-cell infiltration into solid tumors: a key limiting factor for efficacious cancer immunotherapy. Cancer Disco. 4, 522–526 (2014).
doi: 10.1158/2159-8290.CD-13-0985
Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598 (2016).
pubmed: 27550820 doi: 10.1038/nrc.2016.73
Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012).
pubmed: 22439926 doi: 10.1016/j.ccr.2012.02.022
Nakamura, K. & Smyth M. J. Myeloid immunosuppression and immune checkpoints in the tumor microenvironment. Cell Mol. Immunol. https://doi.org/10.1038/s41423-019-0306-1 (2019).
doi: 10.1038/s41423-019-0306-1
Busse, D. et al. Competing feedback loops shape IL-2 signaling between helper and regulatory T lymphocytes in cellular microenvironments. Proc. Natl Acad. Sci. USA 107, 3058–3063 (2010).
pubmed: 20133667 doi: 10.1073/pnas.0812851107
Paluskievicz, C. M. et al. T regulatory cells and priming the suppressive tumor microenvironment. Front Immunol. 10, 1–15 (2019).
doi: 10.3389/fimmu.2019.02453
Dudley, M. E. et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J. Clin. Oncol. 26, 5233–5239 (2008).
pubmed: 18809613 pmcid: 2652090 doi: 10.1200/JCO.2008.16.5449
Rosenberg, S. A. et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N. Engl. J. Med 319, 1676–1680 (1988).
pubmed: 3264384 doi: 10.1056/NEJM198812223192527
Lee, S. & Margolin, K. Tumor-infiltrating lymphocytes in melanoma. Curr. Oncol. Rep. 14, 468–474 (2012).
pubmed: 22878966 pmcid: 3462483 doi: 10.1007/s11912-012-0257-5
Rohaan, M. W., van den Berg, J. H., Kvistborg, P. & Haanen, J. B. A. G. Adoptive transfer of tumor-infiltrating lymphocytes in melanoma: a viable treatment option. J. Immunother. Cancer 6, 102 (2018).
pubmed: 30285902 pmcid: 6171186 doi: 10.1186/s40425-018-0391-1
Yee, C. The use of endogenous T cells for adoptive transfer. Immunol. Rev. 257, 250–263 (2014).
pubmed: 24329802 doi: 10.1111/imr.12134
Gros, A. et al. PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J. Clin. Invest. 124, 2246–2259(2014).
pubmed: 24667641 pmcid: 4001555 doi: 10.1172/JCI73639
Ye, Q. et al. CD137 accurately identifies and enriches for naturally occurring tumor-reactive T cells in tumor. Clin. Cancer Res. 20, 44–55 (2014).
pubmed: 24045181 doi: 10.1158/1078-0432.CCR-13-0945
Gros, A. et al. Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat. Med. 22, 433–438 (2016).
pubmed: 26901407 doi: 10.1038/nm.4051
Fernandez-Poma, S. M. et al. Expansion of tumor-infiltrating CD8+ T cells expressing PD-1 improves the efficacy of adoptive T cell therapy. Cancer Res. http://cancerres.aacrjournals.org/lookup/doi/10.1158/0008-5472.CAN-17-0236 (2017)
Kelderman, S. et al. Antigen-specific TIL therapy for melanoma: a flexible platform for personalized cancer immunotherapy. Eur. J. Immunol. 46, 1351–1360 (2016).
pubmed: 27005018 doi: 10.1002/eji.201545849
Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).
pubmed: 25838375 doi: 10.1126/science.aaa4971
Yang, S. et al. Modulating the differentiation status of ex vivo-cultured anti-tumor T cells using cytokine cocktails. Cancer Immunol. Immunother. 62, 727–736, (2013).
pubmed: 23207483 doi: 10.1007/s00262-012-1378-2
Chacon, J. A. et al. Co-stimulation through 4-1BB/CD137 improves the expansion and function of CD8(+) melanoma tumor-infiltrating lymphocytes for adoptive T-cell therapy. PLoS ONE 8, e60031–e60031 (2013).
pubmed: 23560068 pmcid: 3613355 doi: 10.1371/journal.pone.0060031
Hervas-Stubbs, S. et al. CD8 T cell priming in the presence of IFN-α renders CTLs with improved responsiveness to homeostatic cytokines and recall antigens: important traits for adoptive T cell therapy. J. Immunol. 189, 3299–3310 (2012).
pubmed: 22925929 doi: 10.4049/jimmunol.1102495
Gattinoni, L. et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J. Exp. Med. 202, 907–912 (2005).
pubmed: 16203864 pmcid: 1397916 doi: 10.1084/jem.20050732
Arenas-Ramirez, N., Woytschak, J. & Boyman, O. Interleukin-2: biology, design and application. Trends Immunol. 36, 763–777 (2015).
pubmed: 26572555 doi: 10.1016/j.it.2015.10.003
Romano, E. et al. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proc. Natl Acad. Sci. USA 112, 6140–6145 (2015).
pubmed: 25918390 doi: 10.1073/pnas.1417320112
Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).
pubmed: 23945592 pmcid: 23945592 doi: 10.1038/nature12477
Jazaeri, A. A. et al. Safety and efficacy of adoptive cell transfer using autologous tumor infiltrating lymphocytes (LN-145) for treatment of recurrent, metastatic, or persistent cervical carcinoma. J. Clin. Oncol. 37, 2538 (2019).
doi: 10.1200/JCO.2019.37.15_suppl.2538
Radvanyi, L. G. Tumor-infiltrating lymphocyte therapy: addressing prevailing questions. Cancer J. 21, 450–464 (2015).
pubmed: 26588676 doi: 10.1097/PPO.0000000000000162
Chandran, S. S. et al. Treatment of metastatic uveal melanoma with adoptive transfer of tumour-infiltrating lymphocytes: a single-centre, two-stage, single-arm, phase 2 study. Lancet Oncol. 18, 792–802 (2017).
pubmed: 28395880 pmcid: 5490083 doi: 10.1016/S1470-2045(17)30251-6
Solinas, C., Carbognin, L., De Silva, P., Criscitiello, C. & Lambertini, M. Tumor-infiltrating lymphocytes in breast cancer according to tumor subtype: current state of the art. Breast 35, 142–150 (2017).
pubmed: 28735162 doi: 10.1016/j.breast.2017.07.005
Pedersen, M. et al. Adoptive cell therapy with tumor-infiltrating lymphocytes in patients with metastatic ovarian cancer: a pilot study. Oncoimmunology 7, e1502905–e1502905 (2018).
pubmed: 30524900 pmcid: 6279323 doi: 10.1080/2162402X.2018.1502905
Chandran, S. S. & Klebanoff, C. A. T cell receptor-based cancer immunotherapy: Emerging efficacy and pathways of resistance. Immunol. Rev. 290, 127–147 (2019).
pubmed: 31355495 pmcid: 7027847 doi: 10.1111/imr.12772
Morgan, R. A. et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314, 126–129 (2006).
pubmed: 16946036 pmcid: 2267026 doi: 10.1126/science.1129003
Parkhurst, M. R. et al. T cells targeting carcinoembryonic antigen can eradiate regression of metastatic colorectal cancer but induce severe transient colitis. Mol. Ther. 19, 620–626 (2011).
pubmed: 21157437 doi: 10.1038/mt.2010.272
Simpson, A. J. G., Caballero, O. L., Jungbluth, A., Chen, Y.-T. & Old, L. J. Cancer/testis antigens, gametogenesis and cancer. Nat. Rev. Cancer 5, 615–625 (2005).
pubmed: 16034368 doi: 10.1038/nrc1669
Robbins, P. F. et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J. Clin. Oncol. 29, 917–924 (2011).
pubmed: 21282551 pmcid: 3068063 doi: 10.1200/JCO.2010.32.2537
Lu, Y.-C. et al. Treatment of patients with metastatic cancer using a major histocompatibility complex class II-restricted T-cell receptor targeting the cancer germline antigen MAGE-A3. J. Clin. Oncol. 35, 3322–3329 (2017).
pubmed: 28809608 pmcid: 5652397 doi: 10.1200/JCO.2017.74.5463
Cameron, B. J. et al. Identification of a titin-derived HLA-A1–presented peptide as a cross-reactive target for engineered MAGE A3–directed T cells. Sci. Transl. Med. 5, 197ra103 (2013).
pubmed: 23926201 pmcid: 6002776 doi: 10.1126/scitranslmed.3006034
Morgan, R. A. et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J. Immunother. 36, 133–151 (2013).
pubmed: 23377668 pmcid: 23377668 doi: 10.1097/CJI.0b013e3182829903
Jin, B. Y. et al. Engineered T cells targeting E7 mediate regression of human papillomavirus cancers in a murine model. JCI insight 3, e99488 (2018).
pmcid: 5931134 doi: 10.1172/jci.insight.99488
Wang, Q. J. et al. Identification of T-cell receptors targeting KRAS-mutated human tumors. Cancer Immunol. Res. 4, 204–214(2016).
pubmed: 26701267 doi: 10.1158/2326-6066.CIR-15-0188
Malekzadeh, P. et al. Antigen experienced T cells from peripheral blood recognize p53 neoantigens. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-19-1874 (2020)
pubmed: 31996390 doi: 10.1158/1078-0432.CCR-19-1874
Veatch, J. R. et al. Tumor-infiltrating BRAFV600E-specific CD4+ T cells correlated with complete clinical response in melanoma. J. Clin. Invest. 128, 1563–1568 (2018).
pubmed: 29360643 pmcid: 5873881 doi: 10.1172/JCI98689
Tran, E. et al. T-cell transfer therapy targeting mutant KRAS in cancer. N. Engl. J. Med. 375, 2255–2262 (2016).
pubmed: 27959684 pmcid: 5178827 doi: 10.1056/NEJMoa1609279
Olivera, I., Etxeberria, I., Bolaños, E., Gato-Cañas, M., Melero I. Exploiting TCR recognition of shared hot-spot oncogene-encoded neoantigens. Clin. Cancer Res. 26, 1203–1204 (2020).
pubmed: 32001482 doi: 10.1158/1078-0432.CCR-19-3813
Guedan, S., Calderon, H., Posey, A. D. & Maus, M. V. Engineering and design of chimeric antigen receptors. Mol. Ther. Methods Clin. Dev. 12, 145–156 (2019).
pubmed: 30666307 doi: 10.1016/j.omtm.2018.12.009
Cohen, A. D. et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J. Clin. Invest. 129, 2210–2221 (2019).
pubmed: 30896447 pmcid: 6546468 doi: 10.1172/JCI126397
Fry, T. J. et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 1, 20–28 (2018).
doi: 10.1038/nm.4441
Lim, W. A. & June, C. H. The principles of engineering immune cells to treat cancer. Cell 168, 724–740 (2017).
pubmed: 28187291 pmcid: 5553442 doi: 10.1016/j.cell.2017.01.016
Schmidts, A., Maus, M. V. & Making, C. A. R. T cells a solid option for solid tumors. Front Immunol. 9, 2593 (2018).
pubmed: 30467505 pmcid: 6235951 doi: 10.3389/fimmu.2018.02593
Spear, T. T., Nagato, K. & Nishimura, M. I. Strategies to genetically engineer T cells for cancer immunotherapy. Cancer Immunol. Immunother. 65, 631–649 (2016).
pubmed: 27138532 pmcid: 5424608 doi: 10.1007/s00262-016-1842-5
Ren, Y.-B., Sun, S.-J. & Han, S.-Y. Safety strategies of genetically engineered T cells in cancer immunotherapy. Curr. Pharm. Des. 24, 78–83 (2018).
pubmed: 29283058 pmcid: 5876919 doi: 10.2174/1381612824666171227222624
Jackson, S. R., Yuan, J. & Teague, R. M. Targeting CD8+ T-cell tolerance for cancer immunotherapy. Immunother. 6, 833–852 (2014).
doi: 10.2217/imt.14.51
Aleksic, M. et al. Different affinity windows for virus and cancer-specific T-cell receptors: implications for therapeutic strategies. Eur. J. Immunol. 42, 3174–3179 (2012).
pubmed: 22949370 pmcid: 3776049 doi: 10.1002/eji.201242606
Parkhurst, M. R. et al. Characterization of genetically modified T-cell receptors that recognize the CEA:691-699 peptide in the context of HLA-A2.1 on human colorectal cancer cells. Clin. Cancer Res. 15, 169–180 (2009).
pubmed: 19118044 pmcid: 3474199 doi: 10.1158/1078-0432.CCR-08-1638
Li, Y. et al. Directed evolution of human T-cell receptors with picomolar affinities by phage display. Nat. Biotechnol. 23, 349–354 (2005).
pubmed: 15723046 doi: 10.1038/nbt1070
Linette, G. P. et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 122, 863–871 (2013).
pubmed: 23770775 pmcid: 3743463 doi: 10.1182/blood-2013-03-490565
Palmer, D. C. et al. Cish actively silences TCR signaling in CD8+ T cells to maintain tumor tolerance. J. Exp. Med. 212, 1–19 (2015).
doi: 10.1084/jem.20150304
Stromnes, I. M. et al. Abrogation of SRC homology region 2 domain-containing phosphatase 1 in tumor-specific T cells improves efficacy of adoptive immunotherapy by enhancing the effector function and accumulation of short-lived effector T cells in vivo. J. Immunol. 189, 1812–1825 (2012).
pubmed: 22798667 pmcid: 3522079 doi: 10.4049/jimmunol.1200552
Riese, M. J. et al. Enhanced effector responses in activated CD8+ T cells deficient in diacylglycerol kinases. Cancer Res. 73, 3566–3577 (2013).
pubmed: 23576561 pmcid: 3686869 doi: 10.1158/0008-5472.CAN-12-3874
Brownlie, R. J., Wright, D., Zamoyska, R. & Salmond, R. J. Deletion of PTPN22 improves effector and memory CD8+ T cell responses to tumors. JCI Insight 4, e127847 (2019).
Thaker, Y. R., Raab, M., Strebhardt, K. & Rudd, C. E. GTPase-activating protein Rasal1 associates with ZAP-70 of the TCR and negatively regulates T-cell tumor immunity. Nat. Commun. 10, 1–13 (2019).
doi: 10.1038/s41467-019-12544-4
LaFleur, M. W. et al. A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system. Nat. Commun. 10, 1–10 (2019).
doi: 10.1038/s41467-019-09656-2
Shifrut, E. et al. Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell 175, 1958–1971.e15 (2018).
pubmed: 30449619 pmcid: 6689405 doi: 10.1016/j.cell.2018.10.024
Manguso, R. T. et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547, 413–418 (2017).
pubmed: 28723893 pmcid: 5924693 doi: 10.1038/nature23270
Patel, S. J. et al. Identification of essential genes for cancer immunotherapy. Nature 548, 537–542 (2017).
pubmed: 28783722 pmcid: 5870757 doi: 10.1038/nature23477
Ramishetti S. & Peer D. Engineering lymphocytes with RNAi. Adv. Drug Deliv. Rev. 141, 55–66 (2019).
Tang, R., Langdon, W. Y. & Zhang, J. Regulation of immune responses by E3 ubiquitin ligase Cbl-b. Cell Immunol. 340, 103878 (2019).
pubmed: 30442330 doi: 10.1016/j.cellimm.2018.11.002
Hinterleitner, R. et al. Adoptive transfer of siRNA Cblb-silenced CD8+ T lymphocytes augments tumor vaccine efficacy in a B16 melanoma model. PLoS ONE 7, 1–9 (2012).
doi: 10.1371/journal.pone.0044295
Ramakrishna, S. et al. Modulation of target antigen density improves CAR T-cell functionality and persistence. Clin. Cancer Res. 25, 5329–5341 (2019).
pubmed: 31110075 doi: 10.1158/1078-0432.CCR-18-3784
Ghorashian, S. et al. Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR. Nat. Med. 25, 1408–1414 (2019).
pubmed: 31477906 doi: 10.1038/s41591-019-0549-5
Weinkove, R., George, P., Dasyam, N. & McLellan, A. D. Selecting costimulatory domains for chimeric antigen receptors: functional and clinical considerations. Clin. Transl. Immunol. 8, e1049–e1049 (2019).
doi: 10.1002/cti2.1049
Chen, P.-L. et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Disco. 6, 827–837 (2016).
doi: 10.1158/2159-8290.CD-15-1545
Peng, W. et al. PD-1 blockade enhances T-cell migration to tumors by elevating IFN-γ inducible chemokines. Cancer Res. 72, 5209–5218 (2012).
pubmed: 22915761 pmcid: 3476734 doi: 10.1158/0008-5472.CAN-12-1187
Mahvi, D. A. et al. Ctla-4 blockade plus adoptive T-cell transfer promotes optimal melanoma immunity in mice. J. Immunother. 38, 54–61 (2015).
pubmed: 25658614 pmcid: 4321765 doi: 10.1097/CJI.0000000000000064
Shi, L. Z. et al. Blockade of CTLA-4 and PD-1 enhances adoptive t-cell therapy efficacy in an ICOS-mediated manner. Cancer Immunol. Res. 7, 1803–1812 (2019).
pubmed: 31466995 doi: 10.1158/2326-6066.CIR-18-0873
Weigelin, B. et al. Focusing and sustaining the antitumor CTL effector killer response by agonist anti-CD137 mAb. Proc. Natl Acad. Sci. USA 112, 7551–7556 (2015).
pubmed: 26034288 doi: 10.1073/pnas.1506357112
Kjaergaard, J. et al. Augmentation versus inhibition: effects of conjunctional OX-40 receptor monoclonal antibody and IL-2 treatment on adoptive immunotherapy of advanced tumor. J. Immunol. 167, 6669–6677 (2001).
pubmed: 11714839 doi: 10.4049/jimmunol.167.11.6669
Imai, N. et al. Glucocorticoid-induced tumor necrosis factor receptor stimulation enhances the multifunctionality of adoptively transferred tumor antigen-specific CD8+ T cells with tumor regression. Cancer Sci. 100, 1317–1325 (2009).
pubmed: 19432889 doi: 10.1111/j.1349-7006.2009.01179.x
Liu, C. et al. Agonistic antibody to CD40 boosts the antitumor activity of adoptively transferred T cells in vivo. J. Immunother. 35, 276–282 (2012).
pubmed: 22421945 doi: 10.1097/CJI.0b013e31824e7f43
Cherkassky, L. et al. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J. Clin. Invest. 126, 3130–3144 (2016).
pubmed: 27454297 pmcid: 4966328 doi: 10.1172/JCI83092
Choi, B. D. et al. CRISPR-Cas9 disruption of PD-1 enhances activity of universal EGFRvIII CAR T cells in a preclinical model of human glioblastoma. J. Immunother. Cancer 7, 304 (2019).
pubmed: 31727131 pmcid: 6857271 doi: 10.1186/s40425-019-0806-7
Stadtmauer, E. A., et al. CRISPR-engineered T cells in patients with refractory cancer. Science 367, eaba7365 (2020).
Stephan, M. T. et al. T cell-encoded CD80 and 4-1BBL induce auto- and transcostimulation, resulting in potent tumor rejection. Nat. Med. 13, 1440–1449 (2007).
pubmed: 18026115 doi: 10.1038/nm1676
Abbas, A. K., Trotta, E., R Simeonov, D., Marson, A., Bluestone J. A. Revisiting IL-2: biology and therapeutic prospects. Sci Immunol. 3, eaat1482 (2018).
pubmed: 29980618 doi: 10.1126/sciimmunol.aat1482
Berraondo, P.,et al. Cytokines in clinical cancer immunotherapy. Br. J. Cancer https://www.nature.com/articles/s41416-018-0328-y (2018).
Sockolosky, J. T. et al. Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science 359, 1037–1042 (2018).
pubmed: 29496879 pmcid: 5947856 doi: 10.1126/science.aar3246
Shum, T. et al. Constitutive signaling from an engineered IL7 receptor promotes durable tumor elimination by tumor-redirected T Cells. Cancer Disco. 7, 1238–1247 (2017).
doi: 10.1158/2159-8290.CD-17-0538
Leonard, J. P. et al. Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-gamma production. Blood 90, 2541–2548 (1997).
pubmed: 9326219
Kerkar, S. P. et al. IL-12 triggers a programmatic change in dysfunctional myeloid-derived cells within mouse tumors. J. Clin. Invest. 121, 4746–4757 (2011).
pubmed: 22056381 pmcid: 3226001 doi: 10.1172/JCI58814
Zhang, L. et al. Tumor-infiltrating lymphocytes genetically engineered with an inducible gene encoding interleukin-12 for the immunotherapy of metastatic melanoma. Clin. Cancer Res. 21, 2278–2288 (2015).
pubmed: 25695689 pmcid: 4433819 doi: 10.1158/1078-0432.CCR-14-2085
Zhang, L. et al. Enhanced efficacy and limited systemic cytokine exposure with membrane-anchored interleukin-12 T-cell therapy in murine tumor models. J. Immunother. 8, 1–12 (2020).
Kunert, A. et al. Intra-tumoral production of IL18, but not IL12, by TCR-engineered T cells is non-toxic and counteracts immune evasion of solid tumors. Oncoimmunology 7, e1378842–e1378842 (2017).
pubmed: 29296541 pmcid: 5739571 doi: 10.1080/2162402X.2017.1378842
Liu, Y. et al. Armored inducible expression of IL-12 enhances antitumor activity of glypican-3-targeted chimeric antigen receptor-engineered T cells in hepatocellular carcinoma. J. Immunol. 203, 198–207 (2019).
pubmed: 31142602 doi: 10.4049/jimmunol.1800033
Hurton, L. V. et al. Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells. Proc. Natl Acad. Sci. USA 113, E7788–E7797 (2016).
pubmed: 27849617 doi: 10.1073/pnas.1610544113
Hu, B. et al. CAR T cells secreting IL18 augment antitumor immunity and increase T cell proliferation and costimulation 2. Cell Rep. 20, 3025–3033 (2017).
pubmed: 28954221 pmcid: 6002762 doi: 10.1016/j.celrep.2017.09.002
Ma, X., et al. Interleukin-23 engineering improves CAR T cell function in solid tumors. Nat. Biotechnol. https://doi.org/10.1038/s41587-019-0398-2 (2020).
pubmed: 32015548 doi: 10.1038/s41587-019-0398-2
Etxeberria, I. et al. Intratumor adoptive transfer of IL-12 mRNA transiently engineered antitumor CD8+ T Cells. Cancer Cell 36, 613–629.e7 (2019).
pubmed: 31761658 doi: 10.1016/j.ccell.2019.10.006
Leen, A. M. et al. Reversal of tumor immune inhibition using a chimeric cytokine receptor. Mol. Ther. 22, 1211–1220 (2014).
pubmed: 24732709 pmcid: 4048899 doi: 10.1038/mt.2014.47
Sukumaran, S. et al. Enhancing the potency and specificity of engineered T cells for cancer treatment. Cancer Disco. 8, 972–987 (2018).
doi: 10.1158/2159-8290.CD-17-1298
Kloss, C. C. et al. Dominant-negative TGF-β receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol. Ther. 26, 1855–1866 (2018).
pubmed: 29807781 pmcid: 6037129 doi: 10.1016/j.ymthe.2018.05.003
Tang, N. et al. TGFβ inhibition via CRISPR promotes the long-term efficacy of CAR-T cells against solid tumors. JCI insight 5, e133977 (2020).
Laouar, Y., Sutterwala, F. S., Gorelik, L. & Flavell, R. A. Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma. Nat. Immunol. 6, 600–607 (2005).
pubmed: 15852008 doi: 10.1038/ni1197
Li, M. O. & Flavell, R. A. TGF-beta: a master of all T cell trades. Cell 134, 392–404 (2008).
pubmed: 18692464 pmcid: 3677783 doi: 10.1016/j.cell.2008.07.025
Crompton, J. G., Sukumar, M. & Restifo, N. P. Uncoupling T-cell expansion from effector differentiation in cell-based immunotherapy. Immunol. Rev. 257, 264–276 (2014).
pubmed: 24329803 pmcid: 3915736 doi: 10.1111/imr.12135
Gautam, S. et al. The transcription factor c-Myb regulates CD8 + T cell stemness and antitumor immunity. Nat. Immunol. 20, 337–349 (2019).
pubmed: 30778251 pmcid: 6489499 doi: 10.1038/s41590-018-0311-z
Chen, J. et al. NR4A transcription factors limit CAR T cell function in solid tumours. Nature 567, 530–534 (2019).
pubmed: 30814732 pmcid: 6546093 doi: 10.1038/s41586-019-0985-x
Seo, H. et al. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaustion. Proc. Natl Acad. Sci. USA 116, 12410–12415 (2019).
pubmed: 31152140 doi: 10.1073/pnas.1905675116
Fraietta, J. A. et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 558, 307–312 (2018).
pubmed: 29849141 pmcid: 6320248 doi: 10.1038/s41586-018-0178-z
Wei, J. et al. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature 576, 471–476 (2019).
pubmed: 31827283 doi: 10.1038/s41586-019-1821-z pmcid: 6937596
LaFleur, M. W. et al. PTPN2 regulates the generation of exhausted CD8+ T cell subpopulations and restrains tumor immunity. Nat. Immunol. 20, 1335–1347 (2019).
pubmed: 31527834 pmcid: 6754306 doi: 10.1038/s41590-019-0480-4
Lynn, R. C. et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature 576, 293–300 (2019).
pubmed: 31802004 doi: 10.1038/s41586-019-1805-z pmcid: 6944329
Zhao, Z. et al. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell 28, 415–428, (2015).
pubmed: 26461090 pmcid: 5003056 doi: 10.1016/j.ccell.2015.09.004
Teijeira, A. et al. Metabolic consequences of T-cell costimulation in anticancer immunity. Cancer Immunol. Res. 7, 1564–1569 (2019).
pubmed: 31575551 doi: 10.1158/2326-6066.CIR-19-0115
Kishton, R. J., Sukumar, M. & Restifo, N. P. Metabolic regulation of T cell longevity and function in tumor immunotherapy. Cell Metab. 26, 94–109 (2017).
pubmed: 28683298 pmcid: 5543711 doi: 10.1016/j.cmet.2017.06.016
Ho, P. C. et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162, 1217–1228 (2015).
pubmed: 26321681 pmcid: 4567953 doi: 10.1016/j.cell.2015.08.012
Palazon, A. et al. An HIF-1α/VEGF-A axis in cytotoxic T cells regulates tumor progression. Cancer Cell 32, 669–683.e5 (2017).
pubmed: 29136509 pmcid: 5691891 doi: 10.1016/j.ccell.2017.10.003
Zhang, Y. et al. Enhancing CD8(+) T cell fatty acid catabolism within a metabolically challenging tumor microenvironment increases the efficacy of melanoma immunotherapy. Cancer Cell 32, 377–391.e9 (2017).
pubmed: 28898698 pmcid: 28898698 doi: 10.1016/j.ccell.2017.08.004
Dumauthioz, N. et al. Enforced PGC-1α expression promotes CD8 T cell fitness, memory formation and antitumor immunity. Cell Mol. Immunol. https://doi.org/10.1038/s41423-020-0365-3 (2020)
Scharping, N. E. et al. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity 45, 374–388 (2016).
pubmed: 27496732 pmcid: 5207350 doi: 10.1016/j.immuni.2016.07.009
Kawalekar, O. U. et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 44, 380–390 (2016).
pubmed: 26885860 doi: 10.1016/j.immuni.2016.01.021
Teijeira, A. et al. Mitochondrial morphological and functional reprogramming following CD137 (4-1BB) costimulation. Cancer Immunol. Res. 6, 798–811 (2018).
pubmed: 29678874 doi: 10.1158/2326-6066.CIR-17-0767
Menk, A. V. et al. 4-1BB costimulation induces T cell mitochondrial function and biogenesis enabling cancer immunotherapeutic responses. J. Exp. Med. 215, 1091–1100 (2018).
pubmed: 29511066 pmcid: 5881463 doi: 10.1084/jem.20171068
Zah, E., Lin, M.-Y., Silva-Benedict, A., Jensen, M. C. & Chen, Y. Y. T. Cells expressing CD19/CD20 bispecific chimeric antigen receptors prevent antigen escape by malignant B cells. Cancer Immunol. Res. 4, 498–508 (2016).
pubmed: 27059623 pmcid: 4933590 doi: 10.1158/2326-6066.CIR-15-0231
Kuhn, N. F. et al. CD40 ligand-modified chimeric antigen receptor T cells enhance antitumor function by eliciting an endogenous antitumor response. Cancer Cell 35, 473–488.e6 (2019).
pubmed: 30889381 pmcid: 6428219 doi: 10.1016/j.ccell.2019.02.006
Sánchez-Paulete, A. R. et al. Antigen cross-presentation and T-cell cross-priming in cancer immunology and immunotherapy. Ann. Oncol. 28, xii44–xii55 (2017).
pubmed: 28945841 doi: 10.1093/annonc/mdx237
Peng, W. et al. Transduction of tumor-specific T cells with CXCR2 chemokine receptor improves migration to tumor and antitumor immune responses. Clin. Cancer Res. 16, 5458–5468 (2010).
pubmed: 20889916 pmcid: 3476703 doi: 10.1158/1078-0432.CCR-10-0712
Moon, E. K. et al. Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor. Clin. Cancer Res. 17, 4719–4730 (2011).
pubmed: 21610146 pmcid: 3612507 doi: 10.1158/1078-0432.CCR-11-0351
Adachi, K. et al. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat. Biotechnol. 36, 346–351 (2018).
pubmed: 29505028 doi: 10.1038/nbt.4086
Brown, C. E. et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. New Engl. J. Med. 375, 2561–2569 (2016).
pubmed: 28029927 doi: 10.1056/NEJMoa1610497

Auteurs

Iñaki Etxeberria (I)

Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain. ietxeberria@alumni.unav.es.
Navarra Institute for Health Research (IDISNA), Pamplona, Spain. ietxeberria@alumni.unav.es.
Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain. ietxeberria@alumni.unav.es.

Irene Olivera (I)

Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.
Navarra Institute for Health Research (IDISNA), Pamplona, Spain.

Elixabet Bolaños (E)

Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.
Navarra Institute for Health Research (IDISNA), Pamplona, Spain.
Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.

Asunta Cirella (A)

Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.
Navarra Institute for Health Research (IDISNA), Pamplona, Spain.

Álvaro Teijeira (Á)

Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.
Navarra Institute for Health Research (IDISNA), Pamplona, Spain.
Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.

Pedro Berraondo (P)

Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.
Navarra Institute for Health Research (IDISNA), Pamplona, Spain.
Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.

Ignacio Melero (I)

Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain. imelero@unav.es.
Navarra Institute for Health Research (IDISNA), Pamplona, Spain. imelero@unav.es.
Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain. imelero@unav.es.
Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain. imelero@unav.es.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH