Analysis of resistance to bending of metal electroconductive layers deposited on textile composite substrates in PVD process.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
20 May 2020
Historique:
received: 27 05 2019
accepted: 28 04 2020
entrez: 21 5 2020
pubmed: 21 5 2020
medline: 21 5 2020
Statut: epublish

Résumé

In the article a description of the behaviour of metallic layers created in the process of physical vacuum deposition on a composite textile substrates during their cyclical bending process is presented. Either the results of experimental research or the theoretical considerations of changes in the structure resistance as a function of the number of fatigue cycles are presented. It was confirmed mathematically that at the beginning of the bending process, in the case of a small number of bends, single cracks appear on the surface of the layer. After exceeding a certain number of bends, the nature of defects on the surface of the layer changes and the dominating mechanism of changes is the widening and elongation of already existing cracks. It has been confirmed mathematically that changes in resistance in these cases depend respectively on the number of bending cycles and next on quadratic value of number of cycles. A correspondence between the mathematical description and experimental results was obtained.

Identifiants

pubmed: 32433587
doi: 10.1038/s41598-020-65316-2
pii: 10.1038/s41598-020-65316-2
pmc: PMC7239857
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

8310

Références

Gniotek, K. & Krucińska, I. The basic problems of textronics. Fibres Text. East. Eur. 12, 13–16 (2004).
Frydrysiak, M., Korzeniewska, E. & Tęsiorowski, Ł. The Textile Resistive Humidity Sensor Manufacturing via (PVD) Sputtering Method. Sens. Lett. 13, 998–1001 (2015).
doi: 10.1166/sl.2015.3573
Jakubas, A. & Łada-Tondyra, E. A study on application of the ribbing stitch as sensor of respiratory rhythm in smart clothing designed for infants. J. Text. I. 109, 1208–1216 (2018).
doi: 10.1080/00405000.2017.1422308
Stempien, Z., et al. Ammonia gas sensors ink-jet printed on textile substrates. In 2016 IEEE SENSORS. 1–3 (2016)
Xiaoming, T. Handbook of Smart Textiles, Springer Science Business Media Singapore (2015)
Van Langenhove, L. Smart Textiles for Medicine and Healthcare: Materials, Systems and Applications. Woodhead Publishing Series in Textiles (2007)
Korzeniewska, E., Duraj, A., Koneczny, C. & Krawczyk, A. Thin film electrodes as elements of telemedicine systems. Prz. Elektrotechn. 91, 162–165 (2015).
Kolacinski, Z., Szymanski, Ł., Raniszewski, G. & Wiak, S. Plasma synthesis of carbon nanotubes for electrical and electronic engineering. Prz. Elektrotechn. 88, 149–152 (2012).
Raniszewski, G., Miaskowski, A. & Wiak, S. The Application of Carbon Nanotubes in Magnetic Fluid Hyperthermia. J. Nanomater. ID 527652, 1–8 (2015).
doi: 10.1155/2015/527652
Raniszewski, G., Pyc, M. & Kolacinski, Z. Optimization of magnetic field-assisted synthesis of carbon nanotubes for sensing applications. Sensors 10, 18474–83 (2014).
doi: 10.3390/s141018474
Sowinski, J., Wroblewski, G., Janczak, D. & Jakubowska M. Investigations of carbon nanotubes and polyacrylonitrile composites for flexible textronics. In Conference on Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Proceedings of SPIE 10445 (2017)
Honarvar, M. G. & Latifi, M. Overview of wearable electronics and smart textiles. J. Text. I. 108, 631–652 (2017).
doi: 10.1080/00405000.2016.1177870
Wroblewski. G., Krzeminski, J., Janczak, D., Sowinski, M. & Jakubowska M. Transparent electrodes made with ultrasonic spray coating technique for flexible heaters. In Conference on Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Proceedings of SPIE, 10445 (2017)
Tsolis, A., Whittow, W. G., Alexandridis, A. A. & Vardaxoglou, J. C. Embroidery and Related Manufacturing Techniques for Wearable Antennas: Challenges and Opportunities. Electronics 3, 314–338 (2014).
doi: 10.3390/electronics3020314
Cui, H. W., Suganuma, K. & Uchida, H. Highly stretchable, electrically conductive textiles fabricated from silver nanowires and cupro fabrics using a simple dipping-drying method. Nano Res. 8, 1604–1614 (2015).
doi: 10.1007/s12274-014-0649-y
Duan, Z., Huang, Y., Zhang, D. & Chen, S. Electrospinning Fabricating Au/TiO2 Network-like Nanofibers as Visible Light Activated Photocatalyst. Sci. Rep. 9, 8008 (2019).
doi: 10.1038/s41598-019-44422-w
Li, B., Li, D. & Wang, J. Copper deposition on textiles via an automated dispensing process for flexible microstrip antennas. Text. Res. J. 84, 2026–2035 (2014).
doi: 10.1177/0040517514534753
Lu, Y., Liang, Q. & Xue, L. Palladium-free catalytic electroless copper deposition on bamboo fabric: Preparation, morphology and electromagnetic properties. Appl. Surf. Sci. 258, 4782–4787 (2012).
doi: 10.1016/j.apsusc.2012.01.093
Matsuhisa, N. et al. Printable elastic conductors with a high conductivity for electronic textile applications. Nat. Commun. 6, 7461 (2015).
doi: 10.1038/ncomms8461
Kazani, I. et al. Electrical conductive textiles obtained by screen printing. Fibres Text. East. Eur. 90, 57–63 (2012).
Schwarz, A. et al. A study on the morphology of thin copper films on para-aramid yarns and their influence on the yarn’s electro-conductive and mechanical properties. Text. Res. J. 82, 1587–1596 (2012).
doi: 10.1177/0040517511431291
Atwa, Y., Maheshwari, N. & Goldthorpe, I. A. Silver nanowire coated threads for electrically conductive textiles. J. Mater. Chem. C. 3, 3908–3912 (2015).
doi: 10.1039/C5TC00380F
Woltornist, S. J. et al. Preparation of conductive graphene/graphite infused fabrics using an interface trapping method. Carbon 81, 38–42 (2015).
doi: 10.1016/j.carbon.2014.09.020
Zhu, S. et al. Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core. Adv. Funct. Mater. 23, 2308–2314 (2013).
doi: 10.1002/adfm.201202405
Ziaja, J., Jaroszewski, M., Lewandowski, M. & Sasuła, M. Flexible materials used in electromagnetic field shielding. Prz. Elektrotechn. 94, 73–76 (2018).
Ziaja, J., Ozimek, M. & Janukiewicz., J. Application of thin films prepared by impulse magnetron sputtering for shielding of electromagnetic fields. Prz. Elektrotechn. 86, 222–224 (2010).
Hegemann, D., Amberg, M., Ritter, A. & Heuberger, M. Recent developments in Ag metallised textiles using plasma sputtering. Mater. Technol. 24, 41–45 (2009).
doi: 10.1179/175355509X417981
Changyong, L. et al. 3D Printing Technologies for Flexible Tactile Sensors toward Wearable Electronics and Electronic Skin. Polymers. 10, 629 (2018).
doi: 10.3390/polym10060629
Mingyu, Z. et al. Printable Smart Pattern for Multifunctional Energy-Management E-Textile. Matter 1, 168–179 (2019).
doi: 10.1016/j.matt.2019.02.003
Acar, G. et al. Wearable and Flexible Textile Electrodes for Biopotential Signal Monitoring: A review. Electronics 8, 479 (2019).
doi: 10.3390/electronics8050479
Stempien, Z., Rybicki, T., Rybicki, E., Kozanecki, M. & Szynkowska, M. I. In-situ deposition of polyaniline and polypyrrole electroconductive layers on textile surfaces by the reactive ink-jet printing technique. Synth. Met. 202, 49–62 (2015).
doi: 10.1016/j.synthmet.2015.01.027
Stempien, Z. et al. Using the reactive inkjet printing technique to fabricate the gas sensors on textile substrates. Int. J. Eng. Sci. 11, 43–48 (2018).
Li, L., Au, W. M., Hua, T. & Feng, D. Smart Textiles: A Design Approach for Garments Using Conductive Fabrics. Int. J. Asp. Des. 17, 1 (2014).
Pawlak, R., Korzeniewska, E. & Stempień Z. Thin conductive structures on coated textiles. In 13th Selected Issues of Electrical Engineering and Electronics (2016)
Tokarska., M., Frydrysiak, M. & Zieba, J. Electrical properties of flat textile material as inhomegeneous and anisotropic structure. J. Mater. Sci.: Mater. Electron. 24, 5061–5068 (2013).
Liu, C. H. & Yu, X. Silver nanowire-based transparent, flexible, and conductive thin film. Nanoscale Res. Lett. 6, 75 (2011).
doi: 10.1186/1556-276X-6-75
Halonen, E.; et al. Dynamic bending test analysis of inkjet-printed conductors on flexible substrates. In IEEE 62nd Electronic Components and Technology Conference 12906899 (2012)
Harris, K. D., Elias, A. L. & Chung, H. J. Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies. J. Mater. Sci. 51, 2771 (2016).
doi: 10.1007/s10853-015-9643-3
Eutionnatdiffo, P. A. et al. Stress, strain and deformation of polylactic acid filament deposited onto polyethylene terephthalate woven fabric through 3D printing process. Sci. Rep. 9, 1–18 (2019).
doi: 10.1038/s41598-018-37186-2
Li, T. et al. Delocalizing strain in a thin metal film on a polymer substrate. Mech. Mater. 37, 261–273 (2005).
doi: 10.1016/j.mechmat.2004.02.002
Sun, X. J. et al. Thickness dependent fatigue life at microcrack nucleation for metal thin films on flexible substrates. J. Phys. D. 41, 195404 (2008).
doi: 10.1088/0022-3727/41/19/195404
Wang, D., Volkert, C. A. & Kraft, O. Effect of length scale on fatigue life and damage formation in thin Cu films. Mat. Sci. Eng. A-Struct 493, 267–273 (2008).
doi: 10.1016/j.msea.2007.06.092
Kim, B.J., Shin, H.A.S., Choi, I.S. & Joo, Y.C. Electrical failure and damage analysis of multi-layer metal films on flexible substrate during cyclic bending deformation. In 37th International Symposium for Testing and Failure Analysis, ISTFA 2011 (2011)
Pawlak, R., Korzeniewska, E., Koneczny, C. & Hałgas, B. Properties Of Thin Metal Layers Deposited On Textile Composites By Using The PVD Method For Textronic Applications. Autex Res. J. 17, 229–237 (2017).
doi: 10.1515/aut-2017-0015
Korzeniewska, E., Walczak, M. & Rymaszewski, J. Elements of elastic electronics created on textile substrate. In 2017 MIXDES - 24th International Conference Mixed Design of Integrated Circuits and Systems IEEE Explore 447–450 (2017)
Gocławski, J., Korzeniewska, E., Sekulska-Nalewajko, J., Sankowski, D. & Pawlak, R. Extraction of the Polyurethane Layer in Textile Composites for Textronics Applications Using Optical Coherence Tomography. Polymers 10, 469 (2018).
doi: 10.3390/polym10050469
Van Bladel, J. Electromagnetic fields. Mc Graw Hill, New York, 88–89. (1964)
Kazani, I. et al. Influence of dry cleaning on the electric resistance of screen printed conductors on textiles. AUTEX Res. J. 16, 146–153 (2016).
doi: 10.1515/aut-2015-0019

Auteurs

Ewa Korzeniewska (E)

Institute of Electrical Engineering Systems, Lodz University of Technology, ul. Stefanowskiego, 90-924, Lodz, Poland. ewakorz@matel.p.lodz.pl.

Gilbert De Mey (G)

Department of Electronics and Information Systems Ghent University, Technologiepark Zwijnaarde 126, 9052, Zwijnaarde, Belgium.

Ryszard Pawlak (R)

Institute of Electrical Engineering Systems, Lodz University of Technology, ul. Stefanowskiego, 90-924, Lodz, Poland.

Zbigniew Stempień (Z)

Institute of Textiles Architecture, Lodz University of Technology, ul. Zeromskiego 116, 90-924, Lodz, Poland.

Classifications MeSH