Viviparous Reptile Regarded to Have Temperature-Dependent Sex Determination Has Old XY Chromosomes.
Eulamprus heatwolei
genetic sex determination systems
temperature-dependent sex determination
viviparous reptiles
water skinks
Journal
Genome biology and evolution
ISSN: 1759-6653
Titre abrégé: Genome Biol Evol
Pays: England
ID NLM: 101509707
Informations de publication
Date de publication:
01 06 2020
01 06 2020
Historique:
accepted:
15
05
2020
pubmed:
21
5
2020
medline:
10
7
2021
entrez:
21
5
2020
Statut:
ppublish
Résumé
The water skinks Eulamprus tympanum and Eulamprus heatwolei show thermally induced sex determination where elevated temperatures give rise to male offspring. Paradoxically, Eulamprus species reproduce in temperatures of 12-15 °C making them outliers when compared with reptiles that use temperature as a cue for sex determination. Moreover, these two species are among the very few viviparous reptiles reported to have thermally induced sex determination. Thus, we tested whether these skinks possess undetected sex chromosomes with thermal override. We produced transcriptome and genome data for E. heatwolei. We found that E. heatwolei presents XY chromosomes that include 14 gametologs with regulatory functions. The Y chromosomal region is 79-116 Myr old and shared between water and spotted skinks. Our work provides clear evidence that climate could be useful to predict the type of sex determination systems in reptiles and it also indicates that viviparity is strictly associated with sex chromosomes.
Identifiants
pubmed: 32433751
pii: 5841216
doi: 10.1093/gbe/evaa104
pmc: PMC7313667
doi:
Types de publication
Letter
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
924-930Informations de copyright
© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Références
Sci Data. 2014 Jun 24;1:140015
pubmed: 25977773
Science. 2014 Oct 31;346(6209):646-50
pubmed: 25359977
Chromosome Res. 2012 Jan;20(1):7-19
pubmed: 22218935
Bioinformatics. 2014 Aug 1;30(15):2114-20
pubmed: 24695404
Bioinformatics. 2019 Feb 1;35(3):526-528
pubmed: 30016406
Nature. 1977 Apr 28;266(5605):828-30
pubmed: 865602
Curr Mol Pharmacol. 2014;7(2):136-46
pubmed: 25620225
Nature. 2010 Nov 18;468(7322):436-8
pubmed: 20981009
Bioinformatics. 2010 Mar 15;26(6):841-2
pubmed: 20110278
J Mol Biol. 1990 Oct 5;215(3):403-10
pubmed: 2231712
PLoS Biol. 2014 Jul 01;12(7):e1001899
pubmed: 24983465
Genome Biol Evol. 2018 Apr 1;10(4):1079-1087
pubmed: 29659810
Nature. 2015 Jul 2;523(7558):79-82
pubmed: 26135451
Science. 2007 Apr 20;316(5823):411
pubmed: 17446395
Ecol Lett. 2014 Jan;17(1):13-21
pubmed: 23953272
Genome Biol. 2010;11(4):205
pubmed: 20441602
Nat Biotechnol. 2011 May 15;29(7):644-52
pubmed: 21572440
PeerJ. 2019 Feb 6;7:e6281
pubmed: 30755826
Oecologia. 1991 Dec;88(4):562-569
pubmed: 28312627
Genome Res. 2017 Dec;27(12):1974-1987
pubmed: 29133310
Biol Lett. 2008 Apr 23;4(2):176-8
pubmed: 18089519
Evolution. 2013 Sep;67(9):2614-30
pubmed: 24033171
Nature. 2001 Aug 16;412(6848):698-9
pubmed: 11507628
Nat Methods. 2012 Mar 04;9(4):357-9
pubmed: 22388286
Comput Appl Biosci. 1997 Oct;13(5):555-6
pubmed: 9367129
Nature. 2014 Apr 24;508(7497):488-93
pubmed: 24759410
J Evol Biol. 2006 Jul;19(4):1175-82
pubmed: 16780518
Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10557-62
pubmed: 16000407
Nat Methods. 2015 Apr;12(4):357-60
pubmed: 25751142
Genome Biol Evol. 2019 Sep 1;11(9):2666-2677
pubmed: 31557287
Trends Ecol Evol. 1999 May;14(5):186-189
pubmed: 10322531
PLoS Biol. 2013;11(8):e1001643
pubmed: 24015111