Cortical Observation by Synchronous Multifocal Optical Sampling Reveals Widespread Population Encoding of Actions.


Journal

Neuron
ISSN: 1097-4199
Titre abrégé: Neuron
Pays: United States
ID NLM: 8809320

Informations de publication

Date de publication:
22 07 2020
Historique:
received: 30 01 2020
revised: 01 04 2020
accepted: 26 04 2020
pubmed: 21 5 2020
medline: 21 10 2020
entrez: 21 5 2020
Statut: ppublish

Résumé

To advance the measurement of distributed neuronal population representations of targeted motor actions on single trials, we developed an optical method (COSMOS) for tracking neural activity in a largely uncharacterized spatiotemporal regime. COSMOS allowed simultaneous recording of neural dynamics at ∼30 Hz from over a thousand near-cellular resolution neuronal sources spread across the entire dorsal neocortex of awake, behaving mice during a three-option lick-to-target task. We identified spatially distributed neuronal population representations spanning the dorsal cortex that precisely encoded ongoing motor actions on single trials. Neuronal correlations measured at video rate using unaveraged, whole-session data had localized spatial structure, whereas trial-averaged data exhibited widespread correlations. Separable modes of neural activity encoded history-guided motor plans, with similar population dynamics in individual areas throughout cortex. These initial experiments illustrate how COSMOS enables investigation of large-scale cortical dynamics and that information about motor actions is widely shared between areas, potentially underlying distributed computations.

Identifiants

pubmed: 32433908
pii: S0896-6273(20)30315-9
doi: 10.1016/j.neuron.2020.04.023
pmc: PMC7687350
mid: NIHMS1643850
pii:
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

351-367.e19

Subventions

Organisme : Howard Hughes Medical Institute
Pays : United States
Organisme : NINDS NIH HHS
ID : K99 NS116122
Pays : United States
Organisme : NIDA NIH HHS
ID : R37 DA035377
Pays : United States
Organisme : NIMH NIH HHS
ID : T32 MH020016
Pays : United States

Informations de copyright

Copyright © 2020 Elsevier Inc. All rights reserved.

Déclaration de conflit d'intérêts

Declaration of Interests The authors have made all the designs and protocols for COSMOS freely available for nonprofit use; Stanford University is also submitting a patent application to further facilitate commercial translation.

Références

Nat Neurosci. 2020 Feb;23(2):260-270
pubmed: 31907438
Neuron. 2016 Dec 21;92(6):1368-1382
pubmed: 28009277
Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16785-90
pubmed: 18946031
Nat Neurosci. 2013 Oct;16(10):1426-35
pubmed: 23974708
Nature. 2018 Feb 15;554(7692):368-372
pubmed: 29414944
Science. 2019 Apr 19;364(6437):255
pubmed: 31000656
Science. 2020 Apr 3;368(6486):89-94
pubmed: 32241948
Appl Opt. 1995 Apr 10;34(11):1859-66
pubmed: 21037731
Neuron. 2018 Jun 27;98(6):1133-1140.e3
pubmed: 29861283
Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):628-33
pubmed: 8570606
Nat Rev Neurosci. 2015 Aug;16(8):487-97
pubmed: 26152865
Nat Neurosci. 2010 Jan;13(1):133-40
pubmed: 20023653
Proc Natl Acad Sci U S A. 2007 Oct 23;104(43):17174-9
pubmed: 17940014
Neuron. 2019 Aug 7;103(3):506-519.e4
pubmed: 31201123
Nature. 2007 Jan 11;445(7124):168-76
pubmed: 17151600
Neuron. 2019 Sep 25;103(6):1034-1043.e5
pubmed: 31402199
Nat Protoc. 2017 Jan;12(1):32-43
pubmed: 27906169
Nat Methods. 2013 Jan;10(1):60-3
pubmed: 23223154
J Neurophysiol. 2007 May;97(5):3781-9
pubmed: 17344376
Nat Rev Neurosci. 2017 Feb 17;18(3):172-182
pubmed: 28209978
Opt Express. 2015 Jun 1;23(11):13833-47
pubmed: 26072755
Nat Biotechnol. 2016 Aug;34(8):857-62
pubmed: 27347754
Annu Rev Neurosci. 2018 Jul 8;41:431-452
pubmed: 29709208
Nature. 2016 Apr 28;532(7600):459-64
pubmed: 27074502
Neuron. 2011 Oct 6;72(1):166-77
pubmed: 21982377
J Neurosci. 2012 Aug 29;32(35):11956-69
pubmed: 22933781
IEEE Trans Image Process. 2013 Feb;22(2):447-58
pubmed: 22955907
Trends Neurosci. 2017 Mar;40(3):181-193
pubmed: 28012708
Nature. 2012 Mar 14;484(7392):62-8
pubmed: 22419153
Nat Neurosci. 2019 Oct;22(10):1677-1686
pubmed: 31551604
Science. 2015 Jun 19;348(6241):1352-5
pubmed: 26089513
J Neurosci. 2014 Sep 10;34(37):12587-600
pubmed: 25209296
J Neurosci. 2005 Oct 19;25(42):9669-79
pubmed: 16237171
Nat Photonics. 2015 Feb;9(2):113-119
pubmed: 25663846
J Physiol. 1968 Mar;195(1):215-43
pubmed: 4966457
Nat Methods. 2017 Aug;14(8):811-818
pubmed: 28650477
Neuron. 2018 Dec 5;100(5):1045-1058.e5
pubmed: 30482694
Nature. 2010 Apr 22;464(7292):1182-6
pubmed: 20376005
Genes Brain Behav. 2007 Oct;6(7):619-27
pubmed: 17212649
Appl Opt. 2011 Aug 1;50(22):4436-49
pubmed: 21833119
Neuron. 2017 May 17;94(4):880-890.e8
pubmed: 28521138
Neuron. 2016 Jan 20;89(2):285-99
pubmed: 26774160
Nat Methods. 2012 Jun 28;9(7):676-82
pubmed: 22743772
Neuron. 2010 Apr 29;66(2):300-14
pubmed: 20435005
IEEE Trans Pattern Anal Mach Intell. 2007 Aug;29(8):1339-54
pubmed: 17568139
J Biol Methods. 2014;1(2):
pubmed: 25606571
Neuron. 2014 Jan 8;81(1):179-94
pubmed: 24361077
Nat Neurosci. 2016 Dec;19(12):1665-1671
pubmed: 27723744
Cell Rep. 2016 Dec 20;17(12):3385-3394
pubmed: 28009304
Nature. 2013 Jul 18;499(7458):295-300
pubmed: 23868258
Nature. 2013 Nov 7;503(7474):78-84
pubmed: 24201281
Cell. 2019 Jun 13;177(7):1858-1872.e15
pubmed: 31080067
J Neurosci Methods. 2007 May 15;162(1-2):8-13
pubmed: 17254636
Opt Lett. 2015 Aug 1;40(15):3564-7
pubmed: 26258358
Nat Neurosci. 2016 Aug 26;19(9):1165-74
pubmed: 27571195
Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):4761-6
pubmed: 25825731
J Neurophysiol. 2016 Jun 1;115(6):2852-66
pubmed: 26912600
Neuron. 2015 May 20;86(4):1091-1099
pubmed: 25996136
Nature. 2018 Nov;563(7729):79-84
pubmed: 30382200
eNeuro. 2017 Sep 6;4(5):
pubmed: 28932809
Nat Neurosci. 2018 Aug;21(8):1019-1021
pubmed: 30038278
Neuron. 2007 Dec 6;56(5):907-23
pubmed: 18054865
Nature. 2020 Jan;577(7790):386-391
pubmed: 31875851
Neuron. 2018 Aug 22;99(4):814-828.e7
pubmed: 30100254
Nat Neurosci. 2013 Mar;16(3):264-6
pubmed: 23396101
J Neurophysiol. 2012 Apr;107(7):1979-95
pubmed: 22170970
Neuron. 2019 Nov 20;104(4):810-824.e9
pubmed: 31564591
J Neurophysiol. 2015 Jun 1;113(10):3943-53
pubmed: 25855700
Nature. 2012 Jul 5;487(7405):51-6
pubmed: 22722855
Opt Express. 2011 Jan 3;19(1):353-62
pubmed: 21263574
Nature. 2005 Feb 10;433(7026):597-603
pubmed: 15660108
Nature. 2013 May 30;497(7451):585-90
pubmed: 23685452
Nat Neurosci. 2015 Aug;18(8):1101-8
pubmed: 26098757
Nature. 2019 Dec;576(7786):266-273
pubmed: 31776518
Nature. 2014 Sep 11;513(7517):189-94
pubmed: 25162524
Curr Opin Neurobiol. 2019 Apr;55:103-111
pubmed: 30877963
Cell. 2014 Feb 27;156(5):1096-111
pubmed: 24581503
J Neurosci. 2016 Sep 7;36(36):9365-74
pubmed: 27605612
Front Neuroinform. 2016 Feb 16;10:6
pubmed: 26909035
Elife. 2016 Jun 14;5:
pubmed: 27300105
Nature. 2020 Apr;580(7801):100-105
pubmed: 32238928
Neuron. 2016 May 4;90(3):471-82
pubmed: 27151639
Elife. 2019 Jan 17;8:
pubmed: 30652683
Brain. 1997 Apr;120 ( Pt 4):701-22
pubmed: 9153131
Neuron. 2017 Nov 15;96(4):769-782.e2
pubmed: 29107523
Neuron. 2011 Dec 22;72(6):1040-54
pubmed: 22196338
Cell. 2018 Jul 12;174(2):465-480.e22
pubmed: 30007418
Neuron. 2019 Jul 17;103(2):292-308.e4
pubmed: 31171448
Nature. 2014 Apr 10;508(7495):207-14
pubmed: 24695228
Elife. 2017 Jan 06;6:
pubmed: 28059700
Nature. 2017 May 11;545(7653):181-186
pubmed: 28467817
Nat Neurosci. 2011 Aug 07;14(9):1174-81
pubmed: 21822270
Elife. 2018 Feb 22;7:
pubmed: 29469809
Nature. 2018 Nov;563(7729):113-116
pubmed: 30333626
Neuron. 2018 Oct 24;100(2):424-435
pubmed: 30359606
J Neurosci. 2008 Jul 23;28(30):7520-36
pubmed: 18650330
Nat Neurosci. 2014 Dec;17(12):1825-9
pubmed: 25402858
Neuron. 2017 May 17;94(4):891-907.e6
pubmed: 28521139
Science. 2012 Aug 10;337(6095):746-9
pubmed: 22879516
Nature. 2018 Apr 5;556(7699):51-56
pubmed: 29590093

Auteurs

Isaac V Kauvar (IV)

Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA.

Timothy A Machado (TA)

Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.

Elle Yuen (E)

Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.

John Kochalka (J)

Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Neuroscience Graduate Program, Stanford University, Stanford, CA 94305, USA.

Minseung Choi (M)

Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Neuroscience Graduate Program, Stanford University, Stanford, CA 94305, USA.

William E Allen (WE)

Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Neuroscience Graduate Program, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA.

Gordon Wetzstein (G)

Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA.

Karl Deisseroth (K)

Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Psychiatry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA. Electronic address: deissero@stanford.edu.

Articles similaires

Humans Students, Medical Robotic Surgical Procedures Feasibility Studies Female
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages

Classifications MeSH