Real-Time Closed-Loop Suppression of Repolarization Alternans Reduces Arrhythmia Susceptibility In Vivo.
alternans
pacing
prevention
repolarization
ventricular arrhythmias
Journal
Circulation. Arrhythmia and electrophysiology
ISSN: 1941-3084
Titre abrégé: Circ Arrhythm Electrophysiol
Pays: United States
ID NLM: 101474365
Informations de publication
Date de publication:
06 2020
06 2020
Historique:
pubmed:
22
5
2020
medline:
11
11
2020
entrez:
22
5
2020
Statut:
ppublish
Résumé
Repolarization alternans (RA) has been implicated in the pathogenesis of ventricular arrhythmias and sudden cardiac death. We have developed a real-time, closed-loop system to record and analyze RA from multiple intracardiac leads, and deliver dynamically R-wave triggered pacing stimuli during the absolute refractory period. We have evaluated the ability of this system to control RA and reduce arrhythmia susceptibility, in vivo. R-wave triggered pacing can induce RA, the magnitude of which can be modulated by varying the amplitude, pulse width, and size of the pacing vector. Using a swine model (n=9), we demonstrate that to induce a 1 µV change in the alternans voltage on the body surface, coronary sinus and left ventricle leads, requires a delivered charge of 0.04±0.02, 0.05±0.025, and 0.06±0.033 µC, respectively, while to induce a one unit change of the K We have developed and evaluated a novel closed-loop method to dynamically modulate RA in a swine model. Our data suggest that suppression of RA directly reduces arrhythmia susceptibility and reinforces the concept that RA plays a critical role in the pathophysiology of arrhythmogenesis.
Sections du résumé
BACKGROUND
Repolarization alternans (RA) has been implicated in the pathogenesis of ventricular arrhythmias and sudden cardiac death.
METHODS
We have developed a real-time, closed-loop system to record and analyze RA from multiple intracardiac leads, and deliver dynamically R-wave triggered pacing stimuli during the absolute refractory period. We have evaluated the ability of this system to control RA and reduce arrhythmia susceptibility, in vivo.
RESULTS
R-wave triggered pacing can induce RA, the magnitude of which can be modulated by varying the amplitude, pulse width, and size of the pacing vector. Using a swine model (n=9), we demonstrate that to induce a 1 µV change in the alternans voltage on the body surface, coronary sinus and left ventricle leads, requires a delivered charge of 0.04±0.02, 0.05±0.025, and 0.06±0.033 µC, respectively, while to induce a one unit change of the K
CONCLUSIONS
We have developed and evaluated a novel closed-loop method to dynamically modulate RA in a swine model. Our data suggest that suppression of RA directly reduces arrhythmia susceptibility and reinforces the concept that RA plays a critical role in the pathophysiology of arrhythmogenesis.
Identifiants
pubmed: 32434448
doi: 10.1161/CIRCEP.119.008186
pmc: PMC7334752
mid: NIHMS1597008
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e008186Subventions
Organisme : NHLBI NIH HHS
ID : R01 HL135335
Pays : United States
Organisme : NIBIB NIH HHS
ID : R21 EB026164
Pays : United States
Organisme : NHLBI NIH HHS
ID : R21 HL137870
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR000170
Pays : United States
Références
Am J Physiol. 1997 Nov;273(5):H2161-9
pubmed: 9374749
IEEE Trans Biomed Eng. 2004 Apr;51(4):570-81
pubmed: 15072211
Circ Arrhythm Electrophysiol. 2011 Jun;4(3):407-17
pubmed: 21430127
Am J Cardiol. 1984 Sep 1;54(6):564-8
pubmed: 6475774
Am J Physiol Heart Circ Physiol. 2003 Dec;285(6):H2722-33
pubmed: 12907420
Circ Res. 2000 Dec 8;87(12):1157-63
pubmed: 11110773
Curr Cardiol Rep. 2013 Sep;15(9):398
pubmed: 23881581
Circ Arrhythm Electrophysiol. 2013 Aug;6(4):818-26
pubmed: 23884196
Circulation. 2000 Oct 3;102(14):1664-70
pubmed: 11015345
Circulation. 2006 Jun 27;113(25):2880-7
pubmed: 16785339
Heart Rhythm. 2006 Jul;3(7):791-7
pubmed: 16818208
N Engl J Med. 1994 Jan 27;330(4):235-41
pubmed: 8272084
Circulation. 1998 Dec 15;98(24):2774-80
pubmed: 9851966
Nat Med. 2000 Dec;6(12):1395-8
pubmed: 11100126
Am J Physiol. 1998 Jul;275(1):H116-21
pubmed: 9688903
Circ Arrhythm Electrophysiol. 2012 Feb;5(1):84-90
pubmed: 22157521
J Am Heart Assoc. 2014 Sep 03;3(5):e001055
pubmed: 25187521
Phys Rev Lett. 2002 Sep 23;89(13):138101
pubmed: 12225067
Am J Physiol. 1997 Sep;273(3 Pt 2):H1205-14
pubmed: 9321808
Eur J Heart Fail. 2006 Jan;8(1):7-15
pubmed: 16202650
Circ Res. 1998 Sep 21;83(6):614-28
pubmed: 9742057
Am J Physiol Heart Circ Physiol. 2014 Feb 15;306(4):H465-74
pubmed: 24322612
Circulation. 1987 Apr;75(4 Pt 2):III146-53
pubmed: 3549048
Heart Rhythm. 2008 May;5(5):670-6
pubmed: 18452868
J Cardiovasc Electrophysiol. 2001 Feb;12(2):196-206
pubmed: 11232619
Ann Biomed Eng. 2004 Jun;32(6):784-92
pubmed: 15255209
Circ J. 2009 Jan;73(1):55-62
pubmed: 19039191
Circulation. 2012 Jan 24;125(3):539-49
pubmed: 22271847
Circulation. 2011 Mar 15;123(10):1052-60
pubmed: 21357826
Heart Rhythm. 2013 Apr;10(4):564-72
pubmed: 23274372
J Am Coll Cardiol. 2002 Jul 17;40(2):207-17
pubmed: 12106921
Heart Rhythm. 2012 Aug;9(8):1256-64.e2
pubmed: 22406384
Am J Physiol. 1990 Mar;258(3 Pt 2):H713-21
pubmed: 2316686
Nat Clin Pract Cardiovasc Med. 2005 Oct;2(10):522-8
pubmed: 16186850
Circulation. 1999 Mar 16;99(10):1385-94
pubmed: 10077525
Circulation. 1999 Mar 23;99(11):1499-507
pubmed: 10086976
Circulation. 1988 Jan;77(1):110-21
pubmed: 3335062
J Cardiovasc Electrophysiol. 2004 May;15(5):594-7
pubmed: 15149432
Eur Heart J. 2008 Apr;29(8):1019-28
pubmed: 18270213
J Mol Cell Cardiol. 2011 Aug;51(2):252-62
pubmed: 21557948
J Cardiovasc Electrophysiol. 2003 Jun;14(6):632-8
pubmed: 12875425