Exposure of Intestinal Epithelial Cells to 2'-Fucosyllactose and CpG Enhances Galectin Release and Instructs Dendritic Cells to Drive Th1 and Regulatory-Type Immune Development.
Cells, Cultured
Coculture Techniques
/ methods
Culture Media, Conditioned
/ pharmacology
Dendritic Cells
/ drug effects
Enterocytes
/ drug effects
Galectins
/ metabolism
HT29 Cells
Humans
Interferon-gamma
/ metabolism
Interleukin-10
/ metabolism
Leukocytes, Mononuclear
/ drug effects
Lymphocyte Activation
Oligodeoxyribonucleotides
/ pharmacology
Th1 Cells
/ drug effects
Transforming Growth Factor beta
/ metabolism
Trisaccharides
/ pharmacology
1
2′-fucosyllactose 2
dendritic cells 6
galectins 4
intestinal epithelial cells 5
mucosal immunity
non-digestible oligosaccharides 3
Journal
Biomolecules
ISSN: 2218-273X
Titre abrégé: Biomolecules
Pays: Switzerland
ID NLM: 101596414
Informations de publication
Date de publication:
19 05 2020
19 05 2020
Historique:
received:
25
04
2020
accepted:
15
05
2020
entrez:
23
5
2020
pubmed:
23
5
2020
medline:
7
4
2021
Statut:
epublish
Résumé
Intestinal epithelial cells (IEC) release immunomodulatory galectins upon exposure to CpG DNA (mimicking bacterial triggers) and short-chain galacto- and long-chain fructo-oligosaccharides (GF). This study aims to investigate the immunomodulatory properties of 2'-fucosyllactose (2'-FL), a non-digestible oligosaccharide (NDO) abundantly present in human milk, using a co-culture model developed to study the crosstalk between IEC and innate and adaptive immune cells. IECs, co-cultured with αCD3/CD28-activated peripheral blood mononuclear cells (PBMC), were apically exposed to NDOs and CpG, washed and co-cultured with immature monocyte-derived dendritic cells (moDC). Subsequently, moDC were co-cultured with naïve CD4+ T-cells. In the presence of CpG, both 2'-FL or GF-exposed IEC enhanced Th1-type IFNγ and regulatory IL-10 secretion of PBMCs, compared to CpG alone, while Th2-type IL-13 was reduced. Both NDOs increased IEC-derived galectin-3, -4, -9 and TGF-β1 of CpG-exposed IEC. Only galectin-9 correlated with all modified immune parameters and TGF-β1 secretion. MoDCs exposed to 2'-FL and CpG-conditioned IEC instructed IFNγ and IL-10 secretion by CD4+ T-cells, suggesting the development of a regulatory Th1 response. These results reveal that 2'-FL and GF could contribute to the mucosal immune development by supporting the effect of microbial CpG DNA associated with the modulation of epithelial galectin and TGF-β1 secretion.
Identifiants
pubmed: 32438601
pii: biom10050784
doi: 10.3390/biom10050784
pmc: PMC7278199
pii:
doi:
Substances chimiques
CPG-oligonucleotide
0
Culture Media, Conditioned
0
Galectins
0
Oligodeoxyribonucleotides
0
Transforming Growth Factor beta
0
Trisaccharides
0
Interleukin-10
130068-27-8
Interferon-gamma
82115-62-6
2'-fucosyllactose
XO2533XO8R
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Références
J Mol Med (Berl). 2016 May;94(5):545-56
pubmed: 26631140
J Leukoc Biol. 2017 Jul;102(1):105-115
pubmed: 28495789
Front Immunol. 2018 May 11;9:923
pubmed: 29867934
Nutr Rev. 2013 Dec;71(12):773-89
pubmed: 24246032
Clin Immunol. 2008 Apr;127(1):78-88
pubmed: 18282810
Int Immunol. 2019 Feb 6;31(1):13-21
pubmed: 30281080
Br J Nutr. 2010 Nov;104(9):1261-71
pubmed: 20522272
Biochem Soc Trans. 2008 Dec;36(Pt 6):1472-7
pubmed: 19021578
Anat Sci Int. 2017 Jan;92(1):25-36
pubmed: 27590897
Biochim Biophys Acta. 2002 Sep 19;1572(2-3):232-54
pubmed: 12223272
Allergy. 2012 Mar;67(3):343-52
pubmed: 22229637
J Innate Immun. 2013;5(6):625-38
pubmed: 23735749
Nat Rev Immunol. 2014 Mar;14(3):141-53
pubmed: 24566914
J Food Sci. 2018 Feb;83(2):499-508
pubmed: 29377120
Pediatr Res. 2004 Oct;56(4):536-40
pubmed: 15295093
PLoS One. 2013 Jul 05;8(7):e68367
pubmed: 23861894
Nat Rev Immunol. 2009 May;9(5):338-52
pubmed: 19365409
Sci Rep. 2017 May 03;7:46790
pubmed: 28467395
Immunity. 2014 Aug 21;41(2):270-82
pubmed: 25065622
PLoS One. 2014 Jul 07;9(7):e101692
pubmed: 24999728
Int Arch Allergy Immunol. 2010;152(2):159-68
pubmed: 20016198
Clin Immunol. 2014 Oct;154(2):91-9
pubmed: 25058467
Exp Biol Med (Maywood). 2017 Oct;242(16):1633-1642
pubmed: 28534432
PLoS One. 2008 Jul 09;3(7):e2629
pubmed: 18612433
J Gastroenterol. 2017 Jul;52(7):777-787
pubmed: 28534191
J Pediatr Gastroenterol Nutr. 2017 Feb;64(2):296-301
pubmed: 28114245
Mol Med Rep. 2013 Jan;7(1):205-10
pubmed: 23064791
Gut. 2016 Jan;65(1):33-46
pubmed: 25431457
Nutr Rev. 2017 Nov 1;75(11):920-933
pubmed: 29053807
Clin Transl Immunology. 2017 Apr 07;6(4):e136
pubmed: 28523126
Front Pediatr. 2018 Sep 10;6:239
pubmed: 30250836
Eur J Pharmacol. 2011 Sep;668 Suppl 1:S124-32
pubmed: 21816141
Mediators Inflamm. 2019 Jul 25;2019:8456829
pubmed: 31427886
Front Immunol. 2018 Mar 09;9:452
pubmed: 29593719
Nat Rev Immunol. 2018 Jun;18(6):405-415
pubmed: 29491358
Nat Rev Immunol. 2003 Apr;3(4):331-41
pubmed: 12669023
J Nutr. 2016 Dec;146(12):2559-2566
pubmed: 27798337
Immunobiology. 2011 Apr;216(4):518-27
pubmed: 20850889
Dig Dis Sci. 2002 Oct;47(10):2316-24
pubmed: 12395905
Int J Biomed Sci. 2006 Jun;2(2):114-20
pubmed: 23674973
J Innate Immun. 2017;9(6):609-620
pubmed: 28889122
Front Immunol. 2019 Jul 31;10:1773
pubmed: 31417553