Reference Ranges for Left Ventricular Curvedness and Curvedness-Based Functional Indices Using Cardiovascular Magnetic Resonance in Healthy Asian Subjects.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
21 05 2020
Historique:
received: 21 10 2019
accepted: 27 04 2020
entrez: 23 5 2020
pubmed: 23 5 2020
medline: 2 12 2020
Statut: epublish

Résumé

Curvature-based three-dimensional cardiovascular magnetic resonance (CMR) allows regional function characterization without an external spatial frame of reference. However, introduction of this modality into clinical practice is hampered by lack of reference values. We aim to establish normal ranges for 3D left ventricular (LV) regional parameters in relation to age and gender for 171 healthy subjects. LV geometrical reconstruction and automatic calculation of regional parameters were implemented by in-house software (CardioWerkz) using stacks of short-axis cine slices. Parameter normal ranges were stratified by gender and age categories (≤44, 45-64, 65-74 and 75-84 years). Our software had excellent intra- and inter-observer agreement. Ageing was significantly associated with increases in end-systolic (ES) curvedness (C

Identifiants

pubmed: 32439884
doi: 10.1038/s41598-020-65153-3
pii: 10.1038/s41598-020-65153-3
pmc: PMC7242400
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

8465

Références

Peng, J. et al. Normal values of myocardial deformation assessed by cardiovascular magnetic resonance feature tracking in a healthy Chinese population: a multicenter study. Front. Physiol. 9, 1181 (2018).
pubmed: 30233388 pmcid: 6129778 doi: 10.3389/fphys.2018.01181
Zhong, L. et al. Left ventricular regional wall curvature and wall stress in patients with ischemic dilated cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 296, H573–84 (2009).
pubmed: 19122166 pmcid: 2660226 doi: 10.1152/ajpheart.00525.2008
Zhong, L. et al. Impact of surgical ventricular restoration on ventricular shape, wall stress, and function in heart failure patients. Am. J. Physiol. Heart Circ. Physiol. 300, H1653–60 (2011).
pubmed: 21357513 pmcid: 3094088 doi: 10.1152/ajpheart.00021.2011
Teo, S. K., Vos, F. J., Tan, R. S., Zhong, L. & Su, Y. Regional ejection fraction and regional area strain for left ventricular function assessment in male patients after first-time myocardial infarction. J. R. Soc. Interface 12, 20150006 (2015).
pubmed: 25694545 pmcid: 4387531 doi: 10.1098/rsif.2015.0006
Su, Y. et al. A geometrical approach for evaluating left ventricular remodeling in myocardial infarct patients. Comput. Methods Programs Biomed. 108, 500–10 (2012).
pubmed: 21507502 doi: 10.1016/j.cmpb.2011.03.008
Zhao, X. et al. Left ventricular wall stress is sensitive marker of hypertrophic cardiomyopathy with preserved ejection fraction. Front. Physiol. 9, 250 (2018).
pubmed: 29643812 pmcid: 5882847 doi: 10.3389/fphys.2018.00250
Zhong, L. et al. Right ventricular regional wall curvedness and area strain in patients with repaired tetralogy of Fallot. Am. J. Physiol. Heart Circ. Physiol. 302, H1306–16 (2012).
pubmed: 22210750 doi: 10.1152/ajpheart.00679.2011
Chan, W. C. Singapore’s Ageing Population: Managing Healthcare And End-Of-Life Decisions. (Routledge, Oxford, UK, 2011).
Leng, S. et al. Age-related changes in four-dimensional CMR-derived atrioventricular junction velocities and displacements: Implications for the identification of altered annular dynamics for ventricular function assessment. Int. J. Cardiol. Heart Vasc. 22, 6-12 (2018).
pubmed: 30480084 pmcid: 6240643
Hindieh, W. et al. Discrepant measurements of maximal left ventricular wall thickness between cardiac magnetic resonance imaging and echocardiography in patients with hypertrophic cardiomyopathy. Circ. Cardiovasc. Imaging 10, e006309 (2017).
pubmed: 28794137 doi: 10.1161/CIRCIMAGING.117.006309
Puntmann, V. O. et al. Left ventricular chamber dimensions and wall thickness by cardiovascular magnetic resonance: comparison with transthoracic echocardiography. Eur. Heart J. Cardiovasc. Imaging 14, 240–6 (2013).
pubmed: 22815376 doi: 10.1093/ehjci/jes145
Kawel, N. et al. Normal left ventricular myocardial thickness for middle-aged and older subjects with steady-state free precession cardiac magnetic resonance: the multi-ethnic study of atherosclerosis. Circ. Cardiovasc. Imaging 5, 500–8 (2012).
pubmed: 22705587 pmcid: 3412148 doi: 10.1161/CIRCIMAGING.112.973560
Natori, S. et al. Cardiovascular function in multi-ethnic study of atherosclerosis: normal values by age, sex, and ethnicity. AJR 186, S357–S365 (2006).
pubmed: 16714609 doi: 10.2214/AJR.04.1868
Zhong, L. et al. Characterization and quantification of curvature using independent coordinates method in the human left ventricle by magnetic resonance imaging to identify the morphology subtype of hypertrophy cardiomyopathy. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014, 5619–22 (2014).
pubmed: 25571269
Dellegrottaglie, S. et al. Pulmonary hypertension: accuracy of detection with left ventricular septal-to-free wall curvature ratio measured at cardiac MR. Radiology 243, 63–9 (2007).
pubmed: 17392248 doi: 10.1148/radiol.2431060067
Koenderink, J. J. & Van Doorn, A. J. Surface shape and curvature scales. Image Vision Comput. 10, 557–565 (1992).
doi: 10.1016/0262-8856(92)90076-F
Addetia, K. et al. Three-dimensional echocardiography-based analysis of right ventricular shape in pulmonary arterial hypertension. Eur. Heart J. Cardiovasc. Imaging 17, 564–75 (2016).
pubmed: 26160404 doi: 10.1093/ehjci/jev171
Addetia, K. et al. Morphologic analysis of the normal right ventricle using three-dimensional echocardiography-derived curvature indices. J. Am. Soc. Echocardiogr. 31, 614–623 (2018).
pubmed: 29402505 pmcid: 5936650 doi: 10.1016/j.echo.2017.12.009
Medvedofsky, D. et al. 2D and 3D echocardiography-derived indices of left ventricular function and shape: relationship with mortality. JACC Cardiovasc. Imaging 11, 1569–1579 (2018).
pubmed: 29153577 doi: 10.1016/j.jcmg.2017.08.023
Maffessanti, F. et al. Three-dimensional analysis of regional left ventricular endocardial curvature from cardiac magnetic resonance images. Magn. Reson. Imaging 29, 516–24 (2011).
pubmed: 21216552 doi: 10.1016/j.mri.2010.11.002
Badeer, H. S. Contractile tension in the myocardium. Am. Heart J. 66, 432–4 (1963).
pubmed: 14056796 doi: 10.1016/0002-8703(63)90278-3
Grossman, W., Jones, D. & McLaurin, L. P. Wall stress and patterns of hypertrophy in the human left ventricle. J. Clin. Invest. 56, 56–64 (1975).
pubmed: 124746 pmcid: 436555 doi: 10.1172/JCI108079
Yin, F. C. Ventricular wall stress. Circ. Res. 49, 829–842 (1981).
pubmed: 7023741 doi: 10.1161/01.RES.49.4.829
Zhong, L., Ghista, D. N. & Tan, R. S. Left ventricular wall stress compendium. Comput. Meth. Biomech. Biomed. Eng. 15, 1015–1041 (2012).
doi: 10.1080/10255842.2011.569885
Alter, P. et al. Relation of B-type natriuretic peptide to left ventricular wall stress as assessed by cardiac magnetic resonance imaging in patients with dilated cardiomyopathy. Can. J. Physiol. Pharmacol. 85, 790–799 (2007).
pubmed: 17901889 doi: 10.1139/Y07-076
Guccione, J. M., Costa, K. D. & McCulloch, A. D. Finite element stress analysis of left ventricular mechanics in the beating dog heart. J. Biomech. 28, 1167–77 (1995).
pubmed: 8550635 doi: 10.1016/0021-9290(94)00174-3
Lee, L. C. et al. Patient-specific finite element modeling of the Cardiokinetix Parachute device: effects on left ventricular wall stress and function. Med. Biol. Eng. Comput. 52, 557–66 (2014).
pubmed: 24793158 pmcid: 4118670 doi: 10.1007/s11517-014-1159-5
Kleijn, S. A., Aly, M. F., Terwee, C. B., van Rossumm, A. C. & Kamp, O. Three-dimensional speckle tracking echocardiography for automatic assessment of global and regional left ventricular function based on area strain. J. Am. Soc. Echocardiogr. 24, 314–21 (2011).
pubmed: 21338866 doi: 10.1016/j.echo.2011.01.014
Pérez de Isla, L. et al. Area strain: normal values for a new parameter in healthy people. Rev. Esp. Cardiol. 64, 1194–7 (2011).
pubmed: 21684666 doi: 10.1016/j.recesp.2011.03.021
Taylor, R. J. et al. Myocardial strain measurement with feature-tracking cardiovascular magnetic resonance: normal values. Eur. Heart J. Cardiovasc. Imaging 16, 871–81 (2015).
pubmed: 25711353 doi: 10.1093/ehjci/jev006
Augustine, D. et al. Global and regional left ventricular myocardial deformation measures by magnetic resonance feature tracking in healthy volunteers: comparison with tagging and relevance of gender. J. Cardiovasc. Magn. Reson. 15, 8 (2013).
pubmed: 23331550 pmcid: 3621526 doi: 10.1186/1532-429X-15-8
Andre, F. et al. Age- and gender-related normal left ventricular deformation assessed by cardiovascular magnetic resonance feature tracking. J. Cardiovasc. Magn. Reson. 17, 25 (2015).
pubmed: 25890093 pmcid: 4355347 doi: 10.1186/s12968-015-0123-3
Rabbitt, R. D. et al. Mapping of hyperelastic deformable templates using the finite element method. Proc. SPIE. 2573, 252–265 (1995).
doi: 10.1117/12.216419
Xi, C. et al. Patient-specific computational analysis of ventricular mechanics in pulmonary arterial hypertension. J. Biomech. Eng. 138, 111001 (2016).
doi: 10.1115/1.4034559
Finsberg, H. et al. Computational quantification of patient-specific changes in ventricular dynamics associated with pulmonary hypertension. Am. J. Physiol. Heart Circ. Physiol. 317, H1363–H1375 (2019).
pubmed: 31674809 doi: 10.1152/ajpheart.00094.2019
Zou, H. et al. Three-dimensional biventricular strains in pulmonary arterial hypertension patients using hyperelastic warping. Comput. Methods Programs. Biomed. 189, 105345 (2020).
pubmed: 31982668 doi: 10.1016/j.cmpb.2020.105345
Zou, H. et al. Quantification of biventricular strains in heart failure with preserved ejection fraction patient using hyperelastic warping method. Front. Physiol. 9, 1295 (2018).
pubmed: 30283352 pmcid: 6156386 doi: 10.3389/fphys.2018.01295
Komajda, M. & Lam, C. S. Heart failure with preserved ejection fraction: a clinical dilemma. Eur. Heart J. 35, 1022–32 (2014).
pubmed: 24618346 doi: 10.1093/eurheartj/ehu067
Petitjean, C. & Dacher, J. N. A review of segmentation methods in short axis cardiac MR images. Med. Image Anal. 15, 169–84 (2011).
pubmed: 21216179 doi: 10.1016/j.media.2010.12.004
Yang, X. L. et al. Cardiac image segmentation by random walks with dynamic shape constraint. IET Comput. Vision 10, 79–86 (2016).
doi: 10.1049/iet-cvi.2014.0450
Bai, W. et al. Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. J. Cardiovasc. Magn. Reson. 20, 65 (2018).
pubmed: 30217194 pmcid: 6138894 doi: 10.1186/s12968-018-0471-x
Yang, X., Song, Q. & Su, Y. Automatic segmentation of left ventricle cavity from short-axis cardiac magnetic resonance images. Med. Biol. Eng. Comput. 55, 1563–1577 (2017).
pubmed: 28160219 doi: 10.1007/s11517-017-1614-1
Avendi, M. R., Kheradvar, A. & Jafarkhani, H. A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med. Image Anal. 30, 108–119 (2016).
pubmed: 26917105 doi: 10.1016/j.media.2016.01.005
Bernard, O. et al. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37, 2514–2525 (2018).
pubmed: 29994302 doi: 10.1109/TMI.2018.2837502
Bizopoulos, P. & Koutsouris, D. Deep Learning in Cardiology. IEEE Rev. Biomed. Eng. 12, 168–193 (2019).
pubmed: 30530339 doi: 10.1109/RBME.2018.2885714
Leng, S. et al. Imaging 4D morphology and dynamics of mitral annulus in humans using cardiac cine MR feature tracking. Sci. Rep. 8, 81 (2018).
pubmed: 29311562 pmcid: 5758818 doi: 10.1038/s41598-017-18354-2
Avendi, M. R., Kheradvar, A. & Jafarkhani, H. Automatic segmentation of the right ventricle from cardiac MRI using a learning-based approach. Magn. Reson. Med. 78, 2439–2448 (2017).
pubmed: 28205298 doi: 10.1002/mrm.26631
Wang, Y. et al. Fully automatic segmentation of 4D MRI for cardiac functional measurements. Med. Phys. 46, 180–189 (2019).
pubmed: 30352129 doi: 10.1002/mp.13245
Ho, K. K., Anderson, K. M., Kannel, W. B., Grossman, W. & Levy, D. Survival after the onset of congestive heart failure in Framingham heart study subjects. Circulation 88, 107–15 (1993).
pubmed: 8319323 doi: 10.1161/01.CIR.88.1.107
Tan, M. L. et al. A geometrical approach for automatic shape restoration of the left ventricle. PloS One 8, e68615 (2013).
pubmed: 23894325 pmcid: 3716701 doi: 10.1371/journal.pone.0068615
Su, Y., Teo, S. K., Lim, C. W., Zhong, L. & Tan, R. S. Automatic generation of endocardial surface meshes with 1-to-1 correspondence from cine-MR images. Proceedings of SPIE 9414, Medical Imaging 2015: Computer-Aided Diagnosis, 941431, Orlando, FL (2015).
Cerqueira, M. D. et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professional from the Cardiology of the American Heart Association. Circulation 105, 539–542 (2002).
pubmed: 11815441 doi: 10.1161/hc0402.102975
Zhong, L. et al. Left ventricular shape-based contractility index. J. Biomech. 39, 2397–409 (2006).
pubmed: 16168419 doi: 10.1016/j.jbiomech.2005.08.002
Reichek, N. et al. Noninvasive determination of left ventricular end-systolic stress: validation of the method and initial application. Circulation 65, 99–108 (1982).
pubmed: 7053293 doi: 10.1161/01.CIR.65.1.99

Auteurs

Xiaodan Zhao (X)

National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore.

Soo-Kng Teo (SK)

Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Singapore.

Liang Zhong (L)

National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore. zhong.liang@nhcs.com.sg.
Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore. zhong.liang@nhcs.com.sg.

Shuang Leng (S)

National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore.

Jun-Mei Zhang (JM)

National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore.
Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.

Ris Low (R)

National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore.

John Allen (J)

Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.

Angela S Koh (AS)

National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore.
Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.

Yi Su (Y)

Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Singapore.

Ru-San Tan (RS)

National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore.
Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH