Linkages between soil organic carbon fractions and carbon-hydrolyzing enzyme activities across riparian zones in the Three Gorges of China.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
21 05 2020
Historique:
received: 04 07 2019
accepted: 05 02 2020
entrez: 23 5 2020
pubmed: 23 5 2020
medline: 23 5 2020
Statut: epublish

Résumé

The effect of flooding on soil enzyme activities and soil organic carbon (SOC) dynamics remains a widely debated topic. Here, we investigated spatial variations in C-hydrolyzing enzyme activities, soil C contents in different fractions [i.e. labile and recalcitrant carbon (LC and RC)] from 6 sites with four different elevations at two soil depths (0-10 cm and 10-30 cm) in riparian zones of the Three Gorges Reservoir, China. At region scales, the SOC, RC contents, and RC/SOC (RIC) generally showed decreasing tendency from the upstream to the downstream. The C-hydrolyzing enzyme activities were higher in the midstream compared to other sites, which did not correspond well with the changing trend of SOC content, but matched with the spatial variation in LC content. At ecosystem scales, the RC and RIC declined with decreased elevations, but the LC showed opposite trend. Whereas, the four C-hydrolyzing enzyme activities and the specific enzyme activities were corresponded well with the changing trend of LC content. Soil C contents and enzyme activities were generally higher in top soil than deep soil across sites and elevation zones. These results reveal that the LC is the tightest factor in regulating C-hydrolyzing enzyme activities, whereas the soil C quality (i.e. RIC) and flooding collectively drive C-hydrolyzing enzyme activities possibly by affecting decomposition rates of SOC in the riparian zones.

Identifiants

pubmed: 32439894
doi: 10.1038/s41598-020-65200-z
pii: 10.1038/s41598-020-65200-z
pmc: PMC7242359
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

8433

Références

Wang, Y. et al. The effects of the reverse seasonal flooding on soil texture within the hydro-fluctuation belt in the Three Gorges reservoir, China. J. Soils Sediment. 18, 109–115, https://doi.org/10.1007/s11368-017-1725-1 (2017).
doi: 10.1007/s11368-017-1725-1
Bejarano, M. D., Jansson, R. & Nilsson, C. The effects of hydropeaking on riverine plants: a review. Biol. Rev. Camb. Philos. Soc. 93, 658–673, https://doi.org/10.1111/brv.12362 (2018).
doi: 10.1111/brv.12362 pubmed: 28815925
D’Elia, A. H., Liles, G. C., Viers, J. H. & Smart, D. R. Deep carbon storage potential of buried floodplain soils. Sci. Rep. 7, https://doi.org/10.1038/s41598-017-06494-4 (2017).
Ye, C., Cheng, X., Zhang, K., Du, M. & Zhang, Q. Hydrologic pulsing affects denitrification rates and denitrifier communities in a revegetated riparian ecotone. Soil. Biol. Biochem. 115, 137–147, https://doi.org/10.1016/j.soilbio.2017.08.018 (2017).
doi: 10.1016/j.soilbio.2017.08.018
Amendola, D., Mutema, M., Rosolen, V. & Chaplot, V. Soil hydromorphy and soil carbon: A global data analysis. Geoderma 324, 9–17, https://doi.org/10.1016/j.geoderma.2018.03.005 (2018).
doi: 10.1016/j.geoderma.2018.03.005
Andersen, R., Grasset, L., Thormann, M. N., Rochefort, L. & Francez, A.-J. Changes in microbial community structure and function following Sphagnum peatland restoration. Soil. Biol. Biochem. 42, 291–301, https://doi.org/10.1016/j.soilbio.2009.11.006 (2010).
doi: 10.1016/j.soilbio.2009.11.006
Cheng, X., Luo, Y., Xu, X., Sherry, R. & Zhang, Q. Soil organic matter dynamics in a North America tallgrass prairie after 9 yr of experimental warming. Biogeosciences 8, 1487–1498, https://doi.org/10.5194/bg-8-1487-2011 (2011).
doi: 10.5194/bg-8-1487-2011
Peng, C. R., Zhang, L., Qin, H. J. & Li, D. H. Revegetation in the water level fluctuation zone of a reservoir: An ideal measure to reduce the input of nutrients and sediment. Ecol. Eng. 71, 574–577, https://doi.org/10.1016/j.ecoleng.2014.07.078 (2014).
doi: 10.1016/j.ecoleng.2014.07.078
Xie, X. L., Wang, W., Tian, W. W. & Xie, K. J. Waterlogging accelerates the loss of soil organic carbon from abandoned paddy fields in the hilly terrain in subtropical China. Sci. Rep. 7, https://doi.org/10.1038/s41598-017-14820-z (2017).
Fang, J., Yu, G., Liu, L., Hu, S. & Chapin, F. S. Climate change, human impacts, and carbon sequestration in China. P. Natl. A. Sci. 115, 4015–4020, https://doi.org/10.1073/pnas.1700304115 (2018).
doi: 10.1073/pnas.1700304115
Guenet, B. et al. Impact of priming on global soil carbon stocks. Glob. Chang. Biol. 24, 1873–1883, https://doi.org/10.1111/gcb.14069 (2018).
doi: 10.1111/gcb.14069 pubmed: 29365210
Allison, V. J., Condron, L. M., Peltzer, D. A., Richardson, S. J. & Turner, B. L. Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand. Soil. Biol. Biochem. 39, 1770–1781, https://doi.org/10.1016/j.soilbio.2007.02.006 (2007).
doi: 10.1016/j.soilbio.2007.02.006
Bragazza, L. et al. Persistent high temperature and low precipitation reduce peat carbon accumulation. Glob. Change Biol. 22, 4114–4123, https://doi.org/10.1111/gcb.13319 (2016).
doi: 10.1111/gcb.13319
Urbanova, Z., Strakova, P. & Kastovska, E. Response of peat biogeochemistry and soil organic matter quality to rewetting in bogs and spruce swamp forests. Eur. J. Soil. Biol. 85, 12–22, https://doi.org/10.1016/j.ejsobi.2017.12.004 (2018).
doi: 10.1016/j.ejsobi.2017.12.004
Sinsabaugh, R. L., Hill, B. H. & Follstad Shah, J. J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462, 795, https://doi.org/10.1038/nature09548 (2009).s
Xiao, W., Chen, X., Jing, X. & Zhu, B. A meta-analysis of soil extracellular enzyme activities in response to global change. Soil. Biol. Biochem. 123, 21–32, https://doi.org/10.1016/j.soilbio.2018.05.001 (2018).
doi: 10.1016/j.soilbio.2018.05.001
Sutfin, N. A., Wohl, E. E. & Dwire, K. A. Banking carbon: a review of organic carbon storage and physical factors influencing retention in floodplains and riparian ecosystems. Earth Surf. Proc. Land. 41, 38–60, https://doi.org/10.1002/esp.3857 (2016).
doi: 10.1002/esp.3857
Ye, C., Li, S., Zhang, Y., Tong, X. & Zhang, Q. Assessing heavy metal pollution in the water level fluctuation zone of China’s Three Gorges Reservoir using geochemical and soil microbial approaches. Environ. Monit. Assess. 185, 231–240, https://doi.org/10.1007/s10661-012-2547-7 (2013).
doi: 10.1007/s10661-012-2547-7 pubmed: 22311560
Mackay, J. E., Cunningham, S. C. & Cavagnaro, T. R. Riparian reforestation: are there changes in soil carbon and soil microbial communities? Sci. Total. Env. 566-567, 960–967, https://doi.org/10.1016/j.scitotenv.2016.05.045 (2016).
doi: 10.1016/j.scitotenv.2016.05.045
Deng, Q. et al. Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China. Sci. Total. Env. 541, 230–237, https://doi.org/10.1016/j.scitotenv.2015.09.080 (2016).
doi: 10.1016/j.scitotenv.2015.09.080
Chen, J. et al. Bacterial Communities in Riparian Sediments: A Large-Scale Longitudinal Distribution Pattern and Response to Dam Construction. Front. Microbiol. 9, 999, https://doi.org/10.3389/fmicb.2018.00999 (2018).
doi: 10.3389/fmicb.2018.00999 pubmed: 29867892 pmcid: 5964209
Hok, L. et al. Enzymes and C pools as indicators of C build up in short-term conservation agriculture in a savanna ecosystem in Cambodia. Soil. Till. Res. 177, 125–133, https://doi.org/10.1016/j.still.2017.11.015 (2018).
doi: 10.1016/j.still.2017.11.015
Ma, Y. T. et al. Bacterial and Fungal Community Composition and Functional Activity Associated with Lake Wetland Water Level Gradients. Sci. Rep. 8, https://doi.org/10.1038/s41598-018-19153-z (2018).
Bowles, T. M., Acosta-Martínez, V., Calderón, F. & Jackson, L. E. Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil. Biol. Biochem. 68, 252–262, https://doi.org/10.1016/j.soilbio.2013.10.004 (2014).
doi: 10.1016/j.soilbio.2013.10.004
Xu, G. et al. Labile, recalcitrant, microbial carbon and nitrogen and the microbial community composition at two Abies faxoniana forest elevations under elevated temperatures. Soil. Biol. Biochem. 91, 1–13, https://doi.org/10.1016/j.soilbio.2015.08.016 (2015).
doi: 10.1016/j.soilbio.2015.08.016
Bautista-Cruz, A. et al. Cultivation of Opuntia ficus-indica under different soil management practices: A possible sustainable agricultural system to promote soil carbon sequestration and increase soil microbial biomass and activity. Land. Degrad. Dev. 29, 38–46, https://doi.org/10.1002/ldr.2834 (2018).
doi: 10.1002/ldr.2834
Belay-Tedla, A., Zhou, X., Su, B., Wan, S. & Luo, Y. Labile, recalcitrant, and microbial carbon and nitrogen pools of a tallgrass prairie soil in the US Great Plains subjected to experimental warming and clipping. Soil. Biol. Biochem. 41, 110–116, https://doi.org/10.1016/j.soilbio.2008.10.003 (2009).
doi: 10.1016/j.soilbio.2008.10.003
Zhang, Q. et al. Variations in carbon-decomposition enzyme activities respond differently to land use change in central China. Land Degrad. Dev. https://doi.org/10.1002/ldr.3240 (2018).
Burns, R. G. et al. Soil enzymes in a changing environment: Current knowledge and future directions. Soil. Biol. Biochem. 58, 216–234, https://doi.org/10.1016/j.soilbio.2012.11.009 (2013).
doi: 10.1016/j.soilbio.2012.11.009
Allison, S. D. Soil Minerals and Humic Acids Alter Enzyme Stability: Implications for Ecosystem Processes. Biogeochemistry 81, 361–373, https://doi.org/10.1007/s10533-006-9046-2 (2006).
doi: 10.1007/s10533-006-9046-2
Quiquampoix, H. & Burns, R. G. Interactions between Proteins and Soil Mineral. Surfaces: Environ. Health Consequences. Elem. 3, 223–225 (2007).
Stone, M. M., DeForest, J. L. & Plante, A. F. Changes in extracellular enzyme activity and microbial community structure with soil depth at the Luquillo Critical Zone Observatory. Soil. Biol. Biochem. 75, 237–247, https://doi.org/10.1016/j.soilbio.2014.04.017 (2014).
doi: 10.1016/j.soilbio.2014.04.017
Ye, C., Zhang, K., Deng, Q. & Zhang, Q. Plant communities in relation to flooding and soil characteristics in the water level fluctuation zone of the Three Gorges Reservoir, China. Environ. Sci. Pollut. Res. Int. 20, 1794–1802, https://doi.org/10.1007/s11356-012-1148-x (2013).
doi: 10.1007/s11356-012-1148-x pubmed: 22968672
Abbott, B. W., Jones, J. B., Godsey, S. E., Larouche, J. R. & Bowden, W. B. Patterns and persistence of hydrologic carbon and nutrient export from collapsing upland permafrost. Biogeosciences 12, 3725–3740, https://doi.org/10.5194/bg-12-3725-2015 (2015).
doi: 10.5194/bg-12-3725-2015
New, T. & Xie, Z. Impacts of large dams on riparian vegetation: applying global experience to the case of China’s Three Gorges Dam. Biodivers. Conserv. 17, 3149–3163, https://doi.org/10.1007/s10531-008-9416-2 (2008).
doi: 10.1007/s10531-008-9416-2
Zhang, S. et al. Organic carbon accumulation capability of two typical tidal wetland soils in Chongming Dongtan, China. J. Environ. Sci.-China 23, 87–94, https://doi.org/10.1016/s1001-0742(10)60377-4 (2011).
doi: 10.1016/s1001-0742(10)60377-4 pubmed: 21476345
Guenet, B. et al. The impact of long-term CO 2 enrichment and moisture levels on soil microbial community structure and enzyme activities. Geoderma 170, 331–336 (2012).
doi: 10.1016/j.geoderma.2011.12.002
Bao, Y., Gao, P. & He, X. The water-level fluctuation zone of Three Gorges Reservoir — A unique geomorphological unit. Earth-Sci. Rev. 150, 14–24, https://doi.org/10.1016/j.earscirev.2015.07.005 (2015).
doi: 10.1016/j.earscirev.2015.07.005
Ye, F. et al. Soil properties and distribution in the riparian zone: the effects of fluctuations in water and anthropogenic disturbances. Eur. J. Soil Sci., https://doi.org/10.1111/ejss.12756 (2019).
Liu, H. et al. Shifting plant species composition in response to climate change stabilizes grassland primary production. P. Natl. A. Sci. 115, 4051–4056, https://doi.org/10.1073/pnas.1700299114 (2018).
doi: 10.1073/pnas.1700299114
Cenini, V. L. et al. Linkages between extracellular enzyme activities and the carbon and nitrogen content of grassland soils. Soil. Biol. Biochem. 96, 198–206, https://doi.org/10.1016/j.soilbio.2016.02.015 (2016).
doi: 10.1016/j.soilbio.2016.02.015
Feng, J. et al. Inhibited enzyme activities in soil macroaggregates contribute to enhanced soil carbon sequestration under afforestation in central China. Sci. Total. Env. 640-641, 653–661, https://doi.org/10.1016/j.scitotenv.2018.05.332 (2018).
doi: 10.1016/j.scitotenv.2018.05.332
Pereira, G. H. A., Jordao, H. C. K., Silva, V. F. V. & Pereira, M. G. Litter and nutrient flows in tropical upland forest flooded by a hydropower plant in the Amazonian basin. Sci. Total. Environ. 572, 157–168, https://doi.org/10.1016/j.scitotenv.2016.07.177 (2016).
doi: 10.1016/j.scitotenv.2016.07.177 pubmed: 27497033
Lian, Z. et al. Labile and recalcitrant sediment organic carbon pools in the Pearl River Estuary, southern China. Sci. Total. Environ. 640-641, 1302–1311, https://doi.org/10.1016/j.scitotenv.2018.05.389 (2018).
doi: 10.1016/j.scitotenv.2018.05.389 pubmed: 30021297
Yang, W. et al. Shift in soil organic carbon and nitrogen pools in different reclaimed lands following intensive coastal reclamation on the coasts of eastern China. Sci. Rep. 9, https://doi.org/10.1038/s41598-019-42048-6 (2019).
Cao, L. et al. Characterization of Labile Organic Carbon in Different Coastal Wetland Soils of Laizhou Bay, Bohai Sea. Wetlands 37, 163–175, https://doi.org/10.1007/s13157-016-0858-0 (2016).
doi: 10.1007/s13157-016-0858-0
Xiao, Y., Huang, Z. & Lu, X. Changes of soil labile organic carbon fractions and their relation to soil microbial characteristics in four typical wetlands of Sanjiang Plain, Northeast China. Ecol. Eng. 82, 381–389, https://doi.org/10.1016/j.ecoleng.2015.05.015 (2015).
doi: 10.1016/j.ecoleng.2015.05.015
Luo, L., Meng, H. & Gu, J. D. Microbial extracellular enzymes in biogeochemical cycling of ecosystems. J. Environ. Manage. 197, 539–549, https://doi.org/10.1016/j.jenvman.2017.04.023 (2017).
doi: 10.1016/j.jenvman.2017.04.023 pubmed: 28419976
Nave, L. E. et al. Soil hydrology, physical and chemical properties and the distribution of carbon and mercury in a postglacial lake-plain wetland. Geoderma 305, 40–52, https://doi.org/10.1016/j.geoderma.2017.05.035 (2017).
doi: 10.1016/j.geoderma.2017.05.035
Sinsabaugh, R. L. & Follstad Shah, J. J. Ecoenzymatic stoichiometry of recalcitrant organic matter decomposition: the growth rate hypothesis in reverse. Biogeochemistry 102, 31–43, https://doi.org/10.1007/s10533-010-9482-x (2010).
doi: 10.1007/s10533-010-9482-x
Yang, F. et al. Soil bacterial community composition and diversity in relation to edaphic properties and plant traits in grasslands of southern China. Appl. Soil. Ecol. 128, 43–53, https://doi.org/10.1016/j.apsoil.2018.04.001 (2018).
doi: 10.1016/j.apsoil.2018.04.001
Rovira, P. & Ramón Vallejo, V. Labile, recalcitrant, and inert organic matter in Mediterranean forest soils. Soil. Biol. Biochem. 39, 202–215, https://doi.org/10.1016/j.soilbio.2006.07.021 (2007).
doi: 10.1016/j.soilbio.2006.07.021
Jian, S. et al. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis. Soil. Biol. Biochem. 101, 32–43, https://doi.org/10.1016/j.soilbio.2016.07.003 (2016).
doi: 10.1016/j.soilbio.2016.07.003
DeForest, J. L. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and l-DOPA. Soil. Biol. Biochem. 41, 1180–1186, https://doi.org/10.1016/j.soilbio.2009.02.029 (2009).
doi: 10.1016/j.soilbio.2009.02.029
Raiesi, F. & Beheshti, A. Soil specific enzyme activity shows more clearly soil responses to paddy rice cultivation than absolute enzyme activity in primary forests of northwest Iran. Appl. Soil. Ecosl. 75, 63–70, https://doi.org/10.1016/j.apsoil.2013.10.012 (2014).
doi: 10.1016/j.apsoil.2013.10.012

Auteurs

Dandan Zhang (D)

Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences (CAS), Wuhan, 430074, P.R. China.
Graduate University of Chinese Academy of Sciences, Beijing, 100049, China.

Junjun Wu (J)

Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences (CAS), Wuhan, 430074, P.R. China.

Fan Yang (F)

Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences (CAS), Wuhan, 430074, P.R. China.
School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, China.

Qiong Chen (Q)

Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences (CAS), Wuhan, 430074, P.R. China.
Graduate University of Chinese Academy of Sciences, Beijing, 100049, China.

Jiao Feng (J)

Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences (CAS), Wuhan, 430074, P.R. China.

Qianxi Li (Q)

Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences (CAS), Wuhan, 430074, P.R. China.

Qian Zhang (Q)

Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences (CAS), Wuhan, 430074, P.R. China.
School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, China.

Weibo Wang (W)

Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences (CAS), Wuhan, 430074, P.R. China. wangweibo@wbgcas.cn.

Xiaoli Cheng (X)

Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences (CAS), Wuhan, 430074, P.R. China. xlcheng@fudan.edu.cn.
School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, China. xlcheng@fudan.edu.cn.

Classifications MeSH