Efficient Energy Conversion and Storage Based on Robust Fluoride-Free Self-Assembled 1D Niobium Carbide in 3D Nanowire Network.
2D materials
MXenes
electrocatalysts
flexible batteries
nanowires
Journal
Advanced science (Weinheim, Baden-Wurttemberg, Germany)
ISSN: 2198-3844
Titre abrégé: Adv Sci (Weinh)
Pays: Germany
ID NLM: 101664569
Informations de publication
Date de publication:
May 2020
May 2020
Historique:
received:
18
12
2019
revised:
27
02
2020
accepted:
04
03
2020
entrez:
23
5
2020
pubmed:
23
5
2020
medline:
23
5
2020
Statut:
epublish
Résumé
Owing to their high robustness and conductivity, 2D transition metal carbides and nitrides known as MXenes are considered as a promising material class for electrochemical catalysis, energy conversion, and storage applications. Nevertheless, conventional hazardous fluoride-based synthesis routes and the intense intralayer bonding restrict the development of MXenes. Herein, a fluoride-free, facile, and rapid method for synthesizing self-assembled 1D architecture from an MXene-based compound is reported. The MXene nanowire (NW) not only provides a robust connection to the flexible substrate but also effectively increases the electrochemically active surface area. The kinetics-favorable structure yields a boosted performance for the hydrogen/oxygen evolution reaction and the intake of the zinc ion. The 1D NW based on MXene compound maintains high stability in a quite low overpotential of 236 mV for 24 h without detachment from the substrate and manifests an exceptional high-power density of 420 W kg
Identifiants
pubmed: 32440484
doi: 10.1002/advs.201903680
pii: ADVS1678
pmc: PMC7237850
doi:
Types de publication
Journal Article
Langues
eng
Pagination
1903680Informations de copyright
© 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
Déclaration de conflit d'intérêts
The authors declare no conflict of interest.
Références
Angew Chem Int Ed Engl. 2018 May 22;57(21):6115-6119
pubmed: 29633442
Chem Soc Rev. 2014 Sep 21;43(18):6555-69
pubmed: 24626338
Nanoscale Adv. 2018 Aug 20;1(1):265-272
pubmed: 36132455
Adv Mater. 2017 Apr;29(15):
pubmed: 28185336
ACS Nano. 2018 Aug 28;12(8):8597-8605
pubmed: 30040383
ACS Nano. 2019 Aug 27;13(8):8491-8494
pubmed: 31454866
Adv Sci (Weinh). 2020 Apr 06;7(10):1903680
pubmed: 32440484
ACS Nano. 2018 May 22;12(5):4224-4232
pubmed: 29648800
Sci Rep. 2013;3:2286
pubmed: 23884478
J Colloid Interface Sci. 2019 Mar 1;537:306-315
pubmed: 30448651
ACS Nano. 2018 Aug 28;12(8):8017-8028
pubmed: 30048117
ACS Nano. 2019 Mar 26;13(3):3031-3041
pubmed: 30830760
ACS Nano. 2019 Jun 25;13(6):6438-6454
pubmed: 31180624
J Am Chem Soc. 2014 Mar 19;136(11):4113-6
pubmed: 24588686
ACS Nano. 2018 Aug 28;12(8):8048-8059
pubmed: 30067908
J Am Chem Soc. 2013 Oct 30;135(43):15966-9
pubmed: 24144164
Adv Sci (Weinh). 2016 Jun 28;3(11):1600180
pubmed: 27980992
Adv Mater. 2015 Jun 17;27(23):3501-6
pubmed: 25930685
ACS Nano. 2017 Nov 28;11(11):11135-11144
pubmed: 29039915
Chem Commun (Camb). 2014 Jul 18;50(56):7420-3
pubmed: 24821374
Angew Chem Int Ed Engl. 2014 May 5;53(19):4877-80
pubmed: 24692047
Nat Commun. 2019 Apr 16;10(1):1775
pubmed: 30992431
Adv Mater. 2018 Jan;30(4):
pubmed: 29210114
Angew Chem Int Ed Engl. 2018 Nov 19;57(47):15491-15495
pubmed: 30289581
Adv Mater. 2013 Sep 20;25(35):4925-31
pubmed: 23893899
J Am Chem Soc. 2017 Nov 15;139(45):16235-16247
pubmed: 29063760
J Am Chem Soc. 2019 Jun 19;141(24):9610-9616
pubmed: 31117483
ACS Nano. 2017 Jun 27;11(6):5800-5807
pubmed: 28514161
Adv Sci (Weinh). 2018 Jul 19;5(10):1800518
pubmed: 30356929
Nature. 2014 Dec 4;516(7529):78-81
pubmed: 25470044
Adv Sci (Weinh). 2017 Nov 10;5(2):1700464
pubmed: 29610722