Highly Transparent and Flexible Iontronic Pressure Sensors Based on an Opaque to Transparent Transition.
electric double layers
flexible pressure sensors
refractive index
smart windows
transparent bands
transparent pressure sensors
Journal
Advanced science (Weinheim, Baden-Wurttemberg, Germany)
ISSN: 2198-3844
Titre abrégé: Adv Sci (Weinh)
Pays: Germany
ID NLM: 101664569
Informations de publication
Date de publication:
May 2020
May 2020
Historique:
received:
28
01
2020
accepted:
21
02
2020
entrez:
23
5
2020
pubmed:
23
5
2020
medline:
23
5
2020
Statut:
epublish
Résumé
Human-computer interfaces, smart glasses, touch screens, and some electronic skins require highly transparent and flexible pressure-sensing elements. Flexible pressure sensors often apply a microstructured or porous active material to improve their sensitivity and response speed. However, the microstructures or small pores will result in high haze and low transparency of the device, and thus it is challenging to balance the sensitivity and transparency simultaneously in flexible pressure sensors or electronic skins. Here, for a capacitive-type sensor that consists of a porous polyvinylidene fluoride (PVDF) film sandwiched between two transparent electrodes, the challenge is addressed by filling the pores with ionic liquid that has the same refractive index with PVDF, and the transmittance of the film dramatically boosts from 0 to 94.8% in the visible range. Apart from optical matching, the ionic liquid also significantly improves the signal intensity as well as the sensitivity due to the formation of an electric double layer at the dielectric-electrode interfaces, and improves the toughness and stretchability of the active material benefiting from a plasticization effect. Such transparent and flexible sensors will be useful in smart windows, invisible bands, and so forth.
Identifiants
pubmed: 32440489
doi: 10.1002/advs.202000348
pii: ADVS1652
pmc: PMC7237840
doi:
Types de publication
Journal Article
Langues
eng
Pagination
2000348Informations de copyright
© 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
Déclaration de conflit d'intérêts
The authors declare no conflict of interest.
Références
Nano Lett. 2015 Oct 14;15(10):6722-6
pubmed: 26390188
ACS Nano. 2015 Jun 23;9(6):6252-61
pubmed: 25869253
Nat Nanotechnol. 2011 Oct 23;6(12):788-92
pubmed: 22020121
Biomacromolecules. 2009 Jul 13;10(7):1888-93
pubmed: 19435363
Small. 2016 Sep;12(36):5074-5080
pubmed: 27150115
Small. 2018 Feb;14(8):
pubmed: 29372583
ACS Appl Mater Interfaces. 2016 Aug 10;8(31):20364-70
pubmed: 27427977
ACS Appl Mater Interfaces. 2017 Aug 9;9(31):26407-26416
pubmed: 28730804
Adv Sci (Weinh). 2020 Mar 12;7(10):2000348
pubmed: 32440489
Adv Mater. 2017 Jan;29(1):
pubmed: 27786382
Adv Mater. 2014 Dec 3;26(45):7608-14
pubmed: 25355528
Nat Mater. 2010 Oct;9(10):859-64
pubmed: 20835231
Nature. 2006 Feb 16;439(7078):797
pubmed: 16482141
Small. 2018 Aug;14(35):e1801657
pubmed: 30058286
Adv Sci (Weinh). 2015 Jul 14;2(10):1500169
pubmed: 27980911
Science. 2016 Aug 12;353(6300):682-7
pubmed: 27516597
ACS Appl Mater Interfaces. 2018 Apr 18;10(15):12816-12823
pubmed: 29582991
Adv Mater. 2015 Oct 21;27(39):6055-62
pubmed: 26333011
Adv Mater. 2016 Jul;28(26):5181-7
pubmed: 27147136
ACS Nano. 2015 Sep 22;9(9):8801-10
pubmed: 26277994
Small. 2016 Sep;12(36):5042-5048
pubmed: 27323288
Nat Commun. 2015 Aug 24;6:8011
pubmed: 26300307