Age-Related Effects of Orthovanadate Nanoparticles Involve Activation of GSH-Dependent Antioxidant System in Liver Mitochondria.


Journal

Biological trace element research
ISSN: 1559-0720
Titre abrégé: Biol Trace Elem Res
Pays: United States
ID NLM: 7911509

Informations de publication

Date de publication:
Feb 2021
Historique:
received: 28 01 2020
accepted: 14 05 2020
pubmed: 25 5 2020
medline: 22 6 2021
entrez: 25 5 2020
Statut: ppublish

Résumé

Vanadium is an important ultra-trace element nowadays attracting attention with particular emphasis on medical application. But the therapeutic application of vanadium-based drugs is still questionable and restricted due to some toxic side effects. It was found that unique redox properties of vanadium in nanoform provided antioxidant activity and prevented oxidative disturbance in cells in vitro. Though, on the organism level, ambiguous effects of vanadium-based nanoparticles were observed. In this study, the age-related features of prooxidant/antioxidant balance in blood serum and liver mitochondrial and postmitochondrial fractions of 3 and 18-month-old Wistar male rats treated with orthovanadate nanoparticles (GdVO

Identifiants

pubmed: 32447579
doi: 10.1007/s12011-020-02196-7
pii: 10.1007/s12011-020-02196-7
doi:

Substances chimiques

Antioxidants 0
Vanadates 3WHH0066W5
Glutathione Peroxidase EC 1.11.1.9
Glutathione GAN16C9B8O

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

649-659

Subventions

Organisme : the State Fund For Fundamental Research
ID : project № Ф64/29-2016

Commentaires et corrections

Type : ErratumIn

Références

Hagen TM (2003) Oxidative stress, redox imbalance, and the aging process. Antioxid Redox Signal 5(5):503–506. https://doi.org/10.1089/152308603770310149
doi: 10.1089/152308603770310149 pubmed: 14580304
Kregel KC, Zhang HJ (2007) An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Phys Regul Integr Comp Phys 292(1):R18–R36. https://doi.org/10.1152/ajpregu.00327.2006
doi: 10.1152/ajpregu.00327.2006
Sadowska-Bartosz I, Bartosz G (2014) Effect of antioxidants supplementation on aging and longevity. Biomed Res Int 2014:404680–404617. https://doi.org/10.1155/2014/404680
doi: 10.1155/2014/404680 pubmed: 24783202 pmcid: 3982418
Rzigalinski BA (2005) Nanoparticles and cell longevity. Technol Cancer Res Treat 4(6):651–659. https://doi.org/10.1177/153303460500400609
doi: 10.1177/153303460500400609 pubmed: 16292885
Narayanan KB, Park HH (2013) Pleiotropic functions of antioxidant nanoparticles for longevity and medicine. Adv Colloid Interf Sci 201:30–42. https://doi.org/10.1016/j.cis.2013.10.008.34
doi: 10.1016/j.cis.2013.10.008.34
Chen Z, Meng H, Xing G, Yuan H, Zhao F, Liu R, Ye C (2008) Age-related differences in pulmonary and cardiovascular responses to SiO2 nanoparticle inhalation: nanotoxicity has susceptible population Environmental science & technology 42(23):8985–8992. https://doi.org/10.1021/es800975u
Pessoa JC, Etcheverry S, Gambino D (2015) Vanadium compounds in medicine. Coord Chem Rev 301:24–48. https://doi.org/10.1016/j.ccr.2014.12.002
doi: 10.1016/j.ccr.2014.12.002 pubmed: 32226091
Tripathi D, Mani V, Pal RP (2018) Vanadium in biosphere and its role in biological processes. Biol Trace Elem Res 186(1):52–67. https://doi.org/10.1007/s12011-018-1289-y
doi: 10.1007/s12011-018-1289-y pubmed: 29524196
Bishayee A, Oinam S, Basu M, Chatterjee M (2000) Vanadium chemoprevention of 7, 12-dimethylbenz (a) anthracene-induced rat mammary carcinogenesis: probable involvement of representative hepatic phase I and II xenobiotic metabolizing enzymes. Breast Cancer Res Treat 63(2):133–145. https://doi.org/10.1023/A:1006476003685
doi: 10.1023/A:1006476003685 pubmed: 11097089
Harati M, Ani M (2006) Low doses of vanadyl sulfate protect rats from lipid peroxidation and hypertriglyceridemic effects of fructose-enriched diet. Int J Diabet Metabol 14(3):134–137
doi: 10.1159/000497605
Francik R, Krośniak M, Barlik M, Kudła A, Gryboś R, Librowski T (2011) Impact of vanadium complexes treatment on the oxidative stress factors in wistar rats plasma. Bioinorg Chem Appl 2011:1–8. https://doi.org/10.1155/2011/206316
doi: 10.1155/2011/206316
Kim AD, Zhang R, Kang KA, You HJ, Hyun JW (2011) Increased glutathione synthesis following Nrf2 activation by vanadyl sulfate in human chang liver cells. Int J Mol Sci 12(12):8878–8894. https://doi.org/10.3390/ijms12128878
doi: 10.3390/ijms12128878 pubmed: 22272109 pmcid: 3257106
Kim AD, Zhang R, Kang KA, You HJ, Kang KG, Hyun JW (2012) Jeju ground water containing vanadium enhances antioxidant systems in human liver cells. Biol Trace Elem Res 147(1–3):16–24. https://doi.org/10.1007/s12011-011-9277-5
doi: 10.1007/s12011-011-9277-5 pubmed: 22134893
Chandra AK, Ghosh R, Chatterjee A, Sarkar M (2007) Effects of vanadate on male rat reproductive tract histology, oxidative stress markers and androgenic enzyme activities. J Inorg Biochem 101(6):944–956. https://doi.org/10.1016/j.jinorgbio.2007.03.003
doi: 10.1016/j.jinorgbio.2007.03.003 pubmed: 17475337
Hosseini MJ, Shaki F, Ghazi-Khansari M, Pourahmad J (2013) Toxicity of vanadium on isolated rat liver mitochondria: a new mechanistic approach. Metallomics 5(2):152–166. https://doi.org/10.1039/C2MT20198D
doi: 10.1039/C2MT20198D pubmed: 23306434
Domingo JL (2000) Vanadium and diabetes. What about vanadium toxicity? Mol Cell Biochem 203(1):185–187. https://doi.org/10.1023/A:1007067011338
doi: 10.1023/A:1007067011338 pubmed: 10724348
Vernekar AA, Sinha D, Srivastava S, Paramasivam PU, D’Silva P, Mugesh G (2014) An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires. Nat Commun 5:5301. https://doi.org/10.1038/ncomms6301
doi: 10.1038/ncomms6301 pubmed: 25412933
Ghosh S, Roy P, Karmodak N, Jemmis ED, Mugesh G (2018) Nanoisozymes: crystal-facet-dependent enzyme-mimetic activity of V2O5 nanomaterials. Angew Chem Int Ed Eng 130(17):4600–4605. https://doi.org/10.1002/anie.201800681
doi: 10.1002/anie.201800681
Kulkarni A, Kumar GS, Kaur J, Tikoo K (2014) A comparative study of the toxicological aspects of vanadium pentoxide and vanadium oxide nanoparticles. Inhal Toxicol 26(13):772–788. https://doi.org/10.3109/08958378.2014.960106
doi: 10.3109/08958378.2014.960106 pubmed: 25296879
Klochkov VK, Malyshenko AI, Sedykh OO, Malyukin YV (2011) Wet chemical synthesis and characterization of luminescent colloidal nanoparticles: ReVO
Klochkov VK, Grigorova AV, Sedyh OO, Malyukin YV (2012) The influence of agglomeration of nanoparticles on their superoxide dismutase-mimetic activity. Colloids Surf A Physicochem Eng Asp 409:176–182. https://doi.org/10.1016/j.colsurfa.2012.06.019
doi: 10.1016/j.colsurfa.2012.06.019
Yefimova SL, Maksimchuk PO, Seminko VV, Kavok NS, Klochkov VK, Hubenko KA, Sorokin AV, Kurilchenko IY, Malyukin YV (2019) Janus-faced redox activity of LnVO4: Eu3+ (Ln= Gd, Y, and La) nanoparticles. J Phys Chem C 123(24):15323–15329. https://doi.org/10.1021/acs.jpcc.9b03040
doi: 10.1021/acs.jpcc.9b03040
Kavok N, Grygorova G, Klochkov V, Yefimova S (2017) The role of serum proteins in the stabilization of colloidal LnVO4: Eu3+ (Ln= La, Gd, Y) and CeO2 nanoparticles. Colloids Surf A Physicochem Eng Asp 529:594–599. https://doi.org/10.1016/j.colsurfa.2017.06.052
doi: 10.1016/j.colsurfa.2017.06.052
Grygorova G, Klochkov V, Sedyh O, Malyukin Y (2014) Aggregative stability of colloidal ReVO4: Eu3+ (Re= La, Gd, Y) nanoparticles with different particle sizes. Colloids Surf A Physicochem Eng Asp 457:495–501. https://doi.org/10.1016/j.colsurfa.2014.06.024
doi: 10.1016/j.colsurfa.2014.06.024
Kavok NS, Averchenko KA, Klochkov VK, Yefimova SL, Malyukin YV (2014) Mitochondrial potential (ΔΨ m) changes in single rat hepatocytes: the effect of orthovanadate nanoparticles doped with rare-earth elements. Eur Phys J E Soft Matter 37(12):1–8. https://doi.org/10.1140/epje/i2014-14127-9
doi: 10.1140/epje/i2014-14127-9
Klochkov V, Kavok N, Grygorova G, Sedyh O, Malyukin Y (2013) Size and shape influence of luminescent orthovanadate nanoparticles on their accumulation in nuclear compartments of rat hepatocytes. Mater Sci Eng С Mater Biol Appl 33:2708–2712. https://doi.org/10.1016/j.msec.2013.02.046
doi: 10.1016/j.msec.2013.02.046
Tkachenko AS, Klochkov VK, Lesovoy VN, Myasoedov VV, Kavok NS, Onishchenko AI et al (2020) Orally administered gadolinium orthovanadate GdVO4: Eu3+ nanoparticles do not affect the hydrophobic region of cell membranes of leukocytes. Wiener Medizinische Wochenschrift:1–7. https://doi.org/10.1007/s10354-020-00735-4
Tkachenko, A. S., Klochkov, V. K., Onishchenko, A. O., Kavok, N. S., Tkachenko, V. L., & Nakonechna, O. A. (2019). In vivo evaluation of gadolinium orthovanadate GdVO4: Eu3+ nanoparticle toxicity. http://repo.knmu.edu.ua/handle/123456789/25195
Averchenko EA, Kavok NS, Klochkov VK, Malyukin YV (2014) Chemiluminescent diagnostics of free-radical processes in an abiotic system and in liver cells in the presence of nanoparticles based on rare-earth elements nReVO4: Eu3+(Re= Gd, Y, La) and CeO2. J Appl Spectrosc 81(5):827–833. https://doi.org/10.1007/s10812-014-0012-9
doi: 10.1007/s10812-014-0012-9
Karpenko NA, Malukin YuV, Koreneva EM, Klochkov VK, Kavok NS, Smolenko NP, Pochernyaeva SS (2013) The effects of chronic intake of cerium dioxide or gadolinium ortovanadate nanoparticles in aging male rats. Proc 3rd Int Conf Nanomaterials: applications and properties “2013” 2(4):04NAMB28-1-04NAMB28-4. http://essuir.sumdu.edu.ua/handle/123456789/35490
Karpenko NO, Korenieva YM, Chystiakova EY, Smolienko NP, Bielkina IO, Seliukova NY, Kustova SP, Boiko MO, Larianovska YB, Klochkov VK, Kavok NS (2016) The influence of the rare-earth metals nanoparticles on the rat's males reprductive function in the descending stage of ontogenesis. Ukr Biopharm J 4(45):75–80. https://doi.org/10.24959/ubphj.16.59
doi: 10.24959/ubphj.16.59
Klochkov VK, Grigorova AV, Sedyh OO, Malyukin YV (2012) Characteristics of nLnVO4: Eu3+(Ln= La, Gd, Y, Sm) sols with nanoparticles of different shapes and sizes. J Appl Spectrosc 79(5):726–730. https://doi.org/10.1007/s10812-012-9662-7
doi: 10.1007/s10812-012-9662-7
Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358. https://doi.org/10.1016/0003-2697(79)90738-3
doi: 10.1016/0003-2697(79)90738-3
Asakawa T, Matsushita S (1980) Coloring conditions of thiobarbituric acid test for detecting lipid hydroperoxides. Lipids 15(3):137–140. https://doi.org/10.1007/BF02540959
doi: 10.1007/BF02540959
Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70(1):158–169
Gallogly MM, Shelton MD, Qanungo S, Pai HV, Starke DQ, Cl H, Mieyal JJ (2010) Glutaredoxin regulates apoptosis in cardiomyocytes via NFkappaB targets Bcl-2 and Bcl-xL: implications for cardiac aging. Antioxid Redox Signal 12(12):1339–1353. https://doi.org/10.1089/ars.2009.2791
doi: 10.1089/ars.2009.2791 pubmed: 19938943 pmcid: 2864653
Younes M, Schlichting R, Siegers CP (1980) Glutathione S-transferase activities in rat liver: effect of some factors influencing the metabolism of xenobiotics. Pharmacol Res Commun 12(2):115–129. https://doi.org/10.1016/S0031-6989(80)80069-5
doi: 10.1016/S0031-6989(80)80069-5 pubmed: 7384167
Carlberg I, Mannervik B (1975) Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol Chem 250:5475–5480 http://www.jbc.org/content/250/14/5475
pubmed: 237922
Zaheer N, Tewari KK, Krishnan PS (1967) Mitochondrial forms of glucose 6-phosphate dehydrogenase and 6-phosphogluconic acid dehydrogenase in rat liver. Arch Biochem Biophys 120(1):22–34. https://doi.org/10.1016/0003-9861(67)90593-0
doi: 10.1016/0003-9861(67)90593-0 pubmed: 4383013
Bauman DE, Brown RE, Davis CL (1970) Pathways of fatty acid synthesis and reducing equivalent generation in mammary gland of rat, sow, and cow. Arch Biochem Biophys 140(1):237–244. https://doi.org/10.1016/0003-9861(70)90028-7
doi: 10.1016/0003-9861(70)90028-7 pubmed: 4394114
Varghese S, Tang Y, Imlay JA (2003) Contrasting sensitivities of Escherichia coli aconitases a and B to oxidation and iron depletion. J Bacteriol 185(1):221–230. https://doi.org/10.1128/jb.185.1.221-230.2003
doi: 10.1128/jb.185.1.221-230.2003 pubmed: 12486059 pmcid: 141816
Bozhkov AI, Nikitchenko YV (2013) Caloric restriction diet induces specific epigenotypes associated with life span extension. J Nutr Therap 2(1):30–39 http://www.lifescienceglobal.com/pms/index.php/jnt/article/view/693
Bozhkov AI, Nikitchenko Yu V, Al-Bahadly Ali MM (2016) Overeating in early postnatal ontogenesis forms metabolic memory and reduces lifespan. J Gerontol Geriatr Res 5:309 https://www.omicsonline.org/peer-reviewed/abstract-page.php?url=overeating-in-early-postnatal-ontogenesis-forms-metabolic-memory-and-reduces-lifespan-75294
Nikitchenko Yu. V. (2012) Prooxidant-antioxidant system in aging processes and experimental approaches to its correction. Dissertation, V. N. Karazin Kharkiv National University
Delaval E, Perichon M, Friguet B (2004) Age-related impairment of mitochondrial matrix aconitase and ATP-stimulated protease in rat liver and heart. Eur J Biochem 271(22):4559–4564. https://doi.org/10.1111/j.1432-1033.2004.04422.x
doi: 10.1111/j.1432-1033.2004.04422.x pubmed: 15560797
Lushchak OV, Piroddi M, Galli F, Lushchak VI (2014) Aconitase post-translational modification as a key in linkage between Krebs cycle, iron homeostasis, redox signaling, and metabolism of reactive oxygen species. Redox Rep 19(1):8–15. https://doi.org/10.1179/1351000213Y.0000000073
doi: 10.1179/1351000213Y.0000000073 pubmed: 24266943
Sharma RK, Pasqualotto FF, Nelson DR, Thomas JJ, Agarwal A (1999) The reactive oxygen species—total antioxidant capacity score is a new measure of oxidative stress to predict male infertility. Hum Reprod 14(11):2801–2807. https://doi.org/10.1093/humrep/14.11.2801
doi: 10.1093/humrep/14.11.2801 pubmed: 10548626
Golikov AP, Davydov BV, Rudnev DV, Klychnikova EV, Bykova NS, Riabinin VA, Polumiskov VI, Nikolaeva NI, Golikov PP (2005) Effect of mexicor on oxidative stress in acute myocardial infarction. Kardiologiia 45(7):21–26 http://europepmc.org/abstract/MED/16091656
pubmed: 16091656
Park EJ, Lee GH, Yoon C, Kim DW (2016) Comparison of distribution and toxicity following repeated oral dosing of different vanadium oxide nanoparticles in mice. Environ Res 150:154–165. https://doi.org/10.1016/j.envres.2016.05.036
doi: 10.1016/j.envres.2016.05.036 pubmed: 27288913
Klochkov VK, Kaliman VP, Karpenko NA, Kavok NS, Malyukina MY, Yefimova SL, Malyukin YV (2016) In vivo effects of rare-earth based nanoparticles on oxidative balance in rats. Biotechnologia Acta 9(6):72–81. https://doi.org/10.15407/biotech9.06.072
doi: 10.15407/biotech9.06.072
Nikitchenko YV, Klochkov VK, Kavok NS, Karpenko NA, Sedyh OO, Bozhkov AI, Malyukin YV, Semynozhenko VP (2020) Gadolinium orthovanadate nanoparticles increase survival of old rats (In Russ.). Dopov. Nac. Akad. Nauk Ukr 2:29–36. https://doi.org/10.15407/dopovidi2020.02.029
doi: 10.15407/dopovidi2020.02.029
Wörle-Knirsch JM, Kern K, Schleh C, Adelhelm C, Feldmann C, Krug HF (2007) Nanoparticulate vanadium oxide potentiated vanadium toxicity in human lung cells. Environ Sci Technol 41(1):331–336. https://doi.org/10.1021/es061140x
doi: 10.1021/es061140x pubmed: 17265967
Treviño S, Díaz A, Sánchez-Lara E, Sanchez-Gaytan BL, Perez-Aguilar JM, González-Vergara E (2019) Vanadium in biological action: chemical, pharmacological aspects, and metabolic implications in diabetes mellitus. Biol Trace Elem Res 188(1):68–98. https://doi.org/10.1007/s12011-018-1540-6
doi: 10.1007/s12011-018-1540-6 pubmed: 30350272
Rehder D (2015) The role of vanadium in biology. Metallomics 7(5):730–742. https://doi.org/10.1039/C4MT00304G
doi: 10.1039/C4MT00304G pubmed: 25608665
Xu M, Fujita D, Kajiwara S, Minowa T, Li X, Takemura T, Iwai H, Hanagata N (2010) Contribution of physicochemical characteristics of nano-oxides to cytotoxicity. Biomaterials 31(31):8022–8031. https://doi.org/10.1016/j.biomaterials.2010.06.022
doi: 10.1016/j.biomaterials.2010.06.022 pubmed: 20688385
Yefimova SL, Maksimchuk PO, Hubenko KA, Klochkov VK, Borovoy IA, Sorokin AV, Malyukin YV (2019) Untangling the mechanisms of GdYVO4: Eu3+ nanoparticle Photocatalytic activity. Colloids Surf A Physicochem Eng Asp 577:630–636. https://doi.org/10.1016/j.colsurfa.2019.06.028
doi: 10.1016/j.colsurfa.2019.06.028
Fricker SP (2006) The therapeutic application of lanthanides. Chem Soc Rev 35(6):524–533. https://doi.org/10.1039/b509608c
doi: 10.1039/b509608c pubmed: 16729146
Dong H, Du SR, Zheng XY, Lyu GM, Sun LD, Li LD et al (2015) Lanthanide nanoparticles: from design toward bioimaging and therapy. Chem Rev 115(19):10725–10815. https://doi.org/10.1021/acs.chemrev.5b00091
doi: 10.1021/acs.chemrev.5b00091 pubmed: 26151155
Gai S, Li C, Yang P, Lin J (2014) Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chem Rev 114(4):2343–2389. https://doi.org/10.1021/cr4001594
doi: 10.1021/cr4001594 pubmed: 24344724
Bouzigues C, Gacoin T, Alexandrou A (2011) Biological applications of rare-earth based nanoparticles. ACS Nano 5(11):8488–8505. https://doi.org/10.1021/nn202378b
doi: 10.1021/nn202378b pubmed: 21981700
Abdesselem M, Schoeffel M, Maurin I, Ramodiharilafy R, Autret G, Clément O, Tharaux PL, Boilot JP, Gacoin T, Bouzigues C, Alexandrou A (2014) Multifunctional rare-earth vanadate nanoparticles: luminescent labels, oxidant sensors, and MRI contrast agents. ACS Nano 8(11):11126–11137. https://doi.org/10.1021/nn504170x
doi: 10.1021/nn504170x pubmed: 25290552

Auteurs

Yuri V Nikitchenko (YV)

Biology Research Institute, Karazin Kharkiv National University, pl. Svobody 4, Kharkiv, 61000, Ukraine.

Vladimir K Klochkov (VK)

Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv, 61072, Ukraine.

Nataliya S Kavok (NS)

Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv, 61072, Ukraine. kavok@isma.kharkov.ua.

Nina A Karpenko (NA)

Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv, 61072, Ukraine.

Svetlana L Yefimova (SL)

Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave., Kharkiv, 61072, Ukraine.

Irina V Nikitchenko (IV)

Biology Research Institute, Karazin Kharkiv National University, pl. Svobody 4, Kharkiv, 61000, Ukraine.

Anatoly I Bozhkov (AI)

Biology Research Institute, Karazin Kharkiv National University, pl. Svobody 4, Kharkiv, 61000, Ukraine.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH