Diagnostic utility and characteristics of CT-based attenuation correction in brain perfusion SPECT/CT in predicting the exacerbation of Alzheimer changes from mild cognitive impairment utilizing voxel-based statistical analysis in comparison with Chang's method.
Alzheimer disease
Brain perfusion SPECT
CT-based attenuation correction
Mild cognitive impairment
Voxel-based statistical analysis
Journal
Annals of nuclear medicine
ISSN: 1864-6433
Titre abrégé: Ann Nucl Med
Pays: Japan
ID NLM: 8913398
Informations de publication
Date de publication:
Jul 2020
Jul 2020
Historique:
received:
23
02
2020
accepted:
08
05
2020
pubmed:
26
5
2020
medline:
28
5
2021
entrez:
26
5
2020
Statut:
ppublish
Résumé
We examined the diagnostic value of brain perfusion single-photon emission computed tomography (SPECT) using voxel-based statistical analysis with CT-based attenuation correction (CT-AC) by comparing it to that with Chang's AC in mild cognitive impairment (MCI) patients and attempted to locate brain areas that are good indicators predicting the progression of MCI. Twenty-six individuals matched for age, educational background and initial Mini-Mental State Examination (MMSE) score of more than 24 underwent SPECT with N-isopropyl-4-[ Receiver operating characteristic analysis revealed that the area under the curve (AUC) was higher with CT-AC than with Chang's AC in the left temporal and limbic lobes in Level 2. In Level 3, the AUC in the left middle temporal gyrus was higher with CT-AC (0.852) than with Chang's AC (0.827). There were differences between the gyri/lobules that showed higher AUCs with CT-AC and those that showed higher AUCs with Chang's AC. When the gyri with the 4 highest AUCs were combined, AUC (0.897) and accuracy (84.6%) were better with CT-AC than with Chang's AC (0.806 and 80.8%). Surprisingly, the AUCs in the posterior cingulate gyrus and precuneus, excluding the AUC in the right precuneus with Chang's AC (0.715), were no more than 0.70 and less useful. CT-AC may allow brain perfusion SPECT to reflect more exact neuropathic changes in MCI that would cause progression of early AD. CT-AC in conjunction with voxel-based statistical analysis could possess higher diagnostic accuracy for exacerbation of disease implying early Alzheimer changes in MCI patients, with decreases in cerebral perfusion in the left temporal and limbic lobes representing good indicators.
Identifiants
pubmed: 32449110
doi: 10.1007/s12149-020-01477-4
pii: 10.1007/s12149-020-01477-4
doi:
Types de publication
Comparative Study
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
502-511Commentaires et corrections
Type : ErratumIn
Références
Matsuda H. Role of neuroimaging in Alzheimer's disease, with emphasis on brain perfusion SPECT. J Nucl Med. 2007;48(8):1289–300. https://doi.org/10.2967/jnumed.106.037218 .
doi: 10.2967/jnumed.106.037218
pubmed: 17631544
Kaneta T, Nakatsuka M, Nakamura K, Seki T, Yamaguchi S, Tsuboi M, et al. Improved diagnostic accuracy of SPECT through statistical analysis and the detection of hot spots at the primary sensorimotor area for the diagnosis of Alzheimer disease in a community-based study: "The Osaki-Tajiri Project". Clin Nucl Med. 2016;41(1):e1–e6. https://doi.org/10.1097/rlu.0000000000000976 .
doi: 10.1097/rlu.0000000000000976
pubmed: 26359573
Mizumura S, Kumita S, Cho K, Ishihara M, Nakajo H, Toba M, et al. Development of quantitative analysis method for stereotactic brain image: assessment of reduced accumulation in extent and severity using anatomical segmentation. Ann Nucl Med. 2003;17(4):289–95.
doi: 10.1007/BF02988523
pubmed: 12932111
Mizumura S, Kumita S. Stereotactic statistical imaging analysis of the brain using the easy Z-score imaging system for sharing a normal database. Radiat Med. 2006;24(7):545–52. https://doi.org/10.1007/s11604-006-0056-8 .
doi: 10.1007/s11604-006-0056-8
pubmed: 17058152
Matsuda H. The role of neuroimaging in mild cognitive impairment. Neuropathology. 2007;27(6):570–7. https://doi.org/10.1111/j.1440-1789.2007.00794.x .
doi: 10.1111/j.1440-1789.2007.00794.x
pubmed: 18021379
Matsuda H, Mizumura S, Nagao T, Ota T, Iizuka T, Nemoto K, et al. Automated discrimination between very early Alzheimer disease and controls using an easy Z-score imaging system for multicenter brain perfusion single-photon emission tomography. AJNR Am J Neuroradiol. 2007;28(4):731–6.
pubmed: 17416830
pmcid: 7977345
Ishiwata A, Sakayori O, Minoshima S, Mizumura S, Kitamura S, Katayama Y. Preclinical evidence of Alzheimer changes in progressive mild cognitive impairment: a qualitative and quantitative SPECT study. Acta Neurol Scand. 2006;114(2):91–6. https://doi.org/10.1111/j.1600-0404.2006.00661.x .
doi: 10.1111/j.1600-0404.2006.00661.x
pubmed: 16867030
Stodilka RZ, Kemp BJ, Prato FS, Nicholson RL. Importance of bone attenuation in brain SPECT quantification. J Nucl Med. 1998;39(1):190–7.
pubmed: 9443760
Van Laere K, Koole M, Versijpt J, Dierckx R. Non-uniform versus uniform attenuation correction in brain perfusion SPET of healthy volunteers. Eur J Nucl Med. 2001;28(1):90–8.
doi: 10.1007/s002590000407
pubmed: 11202457
Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004;256(3):183–94. https://doi.org/10.1111/j.1365-2796.2004.01388.x .
doi: 10.1111/j.1365-2796.2004.01388.x
pubmed: 15324362
McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7(3):263–9. https://doi.org/10.1016/j.jalz.2011.03.005 .
doi: 10.1016/j.jalz.2011.03.005
pubmed: 21514250
pmcid: 3312024
Minoshima S, Foster NL, Kuhl DE. Posterior cingulate cortex in Alzheimer's disease. Lancet. 1994;8926:895.
doi: 10.1016/S0140-6736(94)92871-1
Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol. 2006;112(4):389–404. https://doi.org/10.1007/s00401-006-0127-z .
doi: 10.1007/s00401-006-0127-z
pubmed: 16906426
pmcid: 3906709
Farid K, Petras S, Poullias X, Caillat-Vigneron N. Clinical impact of nonuniform CT-based attenuation correction in brain perfusion SPECT/CT using (
doi: 10.1097/rlu.0000000000000320
pubmed: 24368532
Braak H, Braak E. Diagnostic criteria for neuropathologic assessment of Alzheimer's disease. Neurobiol Aging. 1997;18(4 Suppl):S85–S8888.
doi: 10.1016/S0197-4580(97)00062-6
pubmed: 9330992
Jack CR Jr, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12(2):207–16. https://doi.org/10.1016/s1474-4422(12)70291-0 .
doi: 10.1016/s1474-4422(12)70291-0
pubmed: 23332364
pmcid: 3622225
Maruyama M, Shimada H, Suhara T, Shinotoh H, Ji B, Maeda J, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron. 2013. https://doi.org/10.1016/j.neuron.2013.07.037 .
doi: 10.1016/j.neuron.2013.07.037
pubmed: 24050400
pmcid: 3809845
Mosconi L, Tsui WH, Herholz K, Pupi A, Drzezga A, Lucignani G, et al. Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer's disease, and other dementias. J Nucl Med. 2008;49(3):390–8. https://doi.org/10.2967/jnumed.107.045385 .
doi: 10.2967/jnumed.107.045385
pubmed: 18287270
Mosconi L, Mistur R, Switalski R, Tsui WH, Glodzik L, Li Y, et al. FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer's disease. Eur J Nucl Med Mol Imaging. 2009;36(5):811–22. https://doi.org/10.1007/s00259-008-1039-z .
doi: 10.1007/s00259-008-1039-z
pubmed: 19142633
pmcid: 2774795
de Leon MJ, Convit A, Wolf OT, Tarshish CY, DeSanti S, Rusinek H, et al. Prediction of cognitive decline in normal elderly subjects with 2-[
doi: 10.1073/pnas.191044198
pubmed: 11526211
pmcid: 58582
Foster NL, Wang AY, Tasdizen T, Fletcher PT, Hoffman JM, Koeppe RA. Realizing the potential of positron emission tomography with 18F-fluorodeoxyglucose to improve the treatment of Alzheimer's disease. Alzheimers Dement. 2008;4(Suppl 1):S29–S36. https://doi.org/10.1016/j.jalz.2007.10.004 .
doi: 10.1016/j.jalz.2007.10.004
pubmed: 18631997
Alafuzoff I, Arzberger T, Al-Sarraj S, Bodi I, Bogdanovic N, Braak H, et al. Staging of neurofibrillary pathology in Alzheimer's disease: a study of the BrainNet Europe Consortium. Brain Pathol. 2008;18(4):484–96.
pubmed: 18371174
pmcid: 2659377
Inui Y, Ichihara T, Uno M, Ishiguro M, Ito K, Kato K, et al. CT-based attenuation correction and resolution compensation for I-123 IMP brain SPECT normal database: a multicenter phantom study. Ann Nucl Med. 2018;32(5):311–8. https://doi.org/10.1007/s12149-018-1248-x .
doi: 10.1007/s12149-018-1248-x
pubmed: 29556945
Yamazaki T, Inui Y, Ichihara T, Uno M, Ota S, Toyoda A, et al. Clinical utility of the normal database of (123)I-iodoamphetamine brain perfusion single photon emission computed tomography for statistical analysis using computed tomography-based attenuation correction: a multicenter study. Ann Nucl Med. 2019;33(11):835–41. https://doi.org/10.1007/s12149-019-01395-0 .
doi: 10.1007/s12149-019-01395-0
pubmed: 31414335