Repetition attenuates the influence of recency on recognition memory: Behavioral and electrophysiological evidence.


Journal

Psychophysiology
ISSN: 1540-5958
Titre abrégé: Psychophysiology
Pays: United States
ID NLM: 0142657

Informations de publication

Date de publication:
09 2020
Historique:
received: 29 09 2019
revised: 16 03 2020
accepted: 30 04 2020
pubmed: 26 5 2020
medline: 7 7 2021
entrez: 26 5 2020
Statut: ppublish

Résumé

Studies of recognition memory often demonstrate a recency effect on behavioral performance, whereby response times (RTs) are faster for stimuli that were previously presented recently as opposed to more remotely in the past. One account of this relationship between performance and presentation lag posits that memories are accessed by serially searching backward in time, such that RT indicates the self-terminating moment of such a process. Here, we investigated the conditions under which this serial search gives way to more efficient means of retrieving memories. Event-related potentials (ERPs) were recorded during a continuous recognition task, in which subjects made binary old/new judgments to stimuli that were each presented up to four times across a range of lags. Stimulus repetition and shorter presentation lag both gave rise to speeded RTs, consistent with previous findings, and we novelly extend these effects to a robust latency measure of the left parietal ERP correlate of retrieval success. Importantly, the relationship between repetition and recency was further elucidated, such that repetition attenuated lag-related differences that were initially present in both the behavioral and neural latency data. These findings are consistent with the idea that an effortful search through recent memory can quickly be abandoned in favor of relying on more efficient "time-independent" cognitive processes or neural signals.

Identifiants

pubmed: 32449795
doi: 10.1111/psyp.13601
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e13601

Informations de copyright

© 2020 Society for Psychophysiological Research.

Références

Anderson, J. A. (1973). A theory for the recognition of items from short memorized lists. Psychological Review, 80(6), 417-438. https://doi.org/10.1037/h0035486
Bates, B., Martin, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48. https://doi.org/10.18637/jss.v067.io1
Bjork, R. A., & Whitten, W. B. (1974). Recency-sensitive retrieval processes in long-term free recall. Cognitive Psychology, 6(2), 173-189. https://doi.org/10.1016/0010-0285(74)90009-7
Brown, G. D. A., Neath, I., & Chater, N. (2007). A temporal ratio model of memory. Psychological Review, 114(3), 539-576. https://doi.org/10.1037/0033-295X.114.3.539
Bürkner, C. P. (2017). Brms: An R package for Bayesian multilevel models using stan. Journal of Statistical Software, 80(1), 1-28. https://doi.org/10.18637/jss.v080.i01
Chan, M., Ross, B., Earle, G., & Caplan, J. B. (2009). Precise instructions determine participants' memory search strategy in judgments of relative order in short lists. Psychonomic Bulletin & Review, 16(5), 945-951. https://doi.org/10.3758/PBR.16.5.945
Crowder, R. G. (1976). Principles of learning and memory. Hillsdale, NJ: Erlbaum.
De Chastelaine, M., Friedman, D., Cycowicz, Y. M., & Horton, C. (2009). Effects of multiple study-test repetition on the neural correlates of recognition memory: ERPs dissociate remembering and knowing. Psychophysiology, 46(1), 86-99. https://doi.org/10.1111/j.1469-8986.2008.00754.x
Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9-21. https://doi.org/10.1016/j.jneumeth.2003.10.009
Donaldson, W., & Murdock, B. B. (1968). Criterion change in continuous recognition memory. Journal of Experimental Psychology, 76(3, Pt.1), 325-330. https://doi.org/10.1037/h0025510
Friedman, D. (1990a). ERPs during continuous recognition memory for words. Biological Psychology, 30(1), 61-87. https://doi.org/10.1016/0301-0511(90)90091-A
Friedman, D. (1990b). Cognitive event-related potential components during continuous recognition memory for pictures. Psychophysiology, 27(2), 136-148. https://doi.org/10.1111/j.1469-8986.1990.tb00365.x
Friedman, D., & Johnson, R. (2000). Event-related potential (ERP) studies of memory encoding and retrieval: A selective review. Microscopy Research & Technique, 51(1), 6-28. https://doi.org/10.1002/1097-0029(20001001)51:1<6:AID-JEMT2>3.0.CO;2-R
Friedman, W. J. (1993). Memory for the time of past events. Psychological Bulletin, 113(1), 44-66. https://doi.org/10.1037/0033-2909.113.1.44
Graetz, S., Daume, J., Friese, U., & Gruber, T. (2018). Alterations in oscillatory cortical activity indicate changes in mnemonic processing during continuous item recognition. Experimental Brain Research, 237(2), 573-583. https://doi.org/10.1007/s00221-018-5439-4
Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., … Hämäläinen, M. S. (2014). MNE software for processing MEG and EEG data. NeuroImage, 86, 446-460. https://doi.org/10.1016/j.neuroimage.2013.10.027
Gronau, Q. F., & Singmann, H. (2018). Bridgesampling: Bridge sampling for marginal likelihoods and bayes factors. R package version 0.6-0. Retrieved from https://CRAN.R-project.org/package=bridgesampling
Hacker, M. J. (1980). Speed and accuracy of recency judgments for events in short-term memory. Journal of Experimental Psychology: Human Learning & Memory, 6(6), 651-675. https://doi.org/10.1037/0278-7393.6.6.651
Hinrichs, J. V. (1970). A two-process memory-strength theory for judgment of recency. Psychological Review, 77(3), 223-233. https://doi.org/10.1037/h0029101
Hintzman, D. L. (1969). Apparent frequency as a function of frequency and the spacing of repetitions. Journal of Experimental Psychology, 80(1), 139-145. https://doi.org/10.1037/h0027133
Hintzman, D. L. (2005). Memory strength and recency judgments. Psychonomic Bulletin & Review, 12(5), 858-864. https://doi.org/10.3758/BF03196777
Hintzman, D. L. (2016). Is memory organized by temporal contiguity? Memory & Cognition, 44(3), 365-375. https://doi.org/10.3758/s13421-015-0573-8
Hockley, W. E. (1982). Retrieval processes in continuous recognition. Journal of Experimental Psychology: Learning, Memory, & Cognition, 8(6), 497-512. https://doi.org/10.1037/0278-7393.8.6.497
Hockley, W. E. (1984). Analysis of response time distributions in the study of cognitive processes. Journal of Experimental Psychology: Learning, Memory, & Cognition, 10(4), 598-615. https://doi.org/10.1037/0278-7393.10.4.598
Howard, M. W. (2018). Memory as perception of the past: Compressed time in mind and brain. Trends in Cognitive Sciences, 22(2), 124-136. https://doi.org/10.1016/j.tics.2017.11.004
Howard, M. W., Shankar, K. H., Aue, W. R., & Criss, A. H. (2015). A distributed representation of internal time. Psychological Review, 122(1), 24-53. https://doi.org/10.1037/a0037840
Ivry, R. B., & Spencer, R. M. C. (2004). The neural representation of time. Current Opinion in Neurobiology, 14(2), 225-232. https://doi.org/10.1016/j.conb.2004.03.013
Johnson, J. D., Muftuler, L. T., & Rugg, M. D. (2008). Multiple repetitions reveal functionally and anatomically distinct patterns of hippocampal activity during continuous recognition memory. Hippocampus, 18(10), 975-980. https://doi.org/10.1002/hipo.20456
Johnson, R., Pfefferbaum, A., & Kopell, B. S. (1985). P300 and long-term memory: Latency predicts recognition performance. Psychophysiology, 22(5), 497-507. https://doi.org/10.1111/j.1469-8986.1985.tb01639.x
Jung, T. P., Makeig, S., Westerfield, W., Townsend, J., Courchesne, E., & Sejnowski, T. J. (2000). Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clinical Neurophysiology, 111(10), 1745-1758. https://doi.org/10.1016/S1388-2457(00)00386-2
Liesefeld, H. R. (2018). Estimating the timing of cognitive operations with MEG/EEG latency measures: A primer, a brief tutorial, and an implementation of various methods. Frontiers in Neuroscience, 12, 765. https://doi.org/10.3389/fnins.2018.00765
Liesefeld, H. R., Liesefeld, A. M., & Zimmer, H. D. (2016). Recollection is delayed under changed viewing conditions: A graded effect on the latency of the late posterior component. Psychophysiology, 53(12), 1811-1822. https://doi.org/10.1111/psyp.12760
Luck, S. J. (2014). An introduction to the event-related potential technique (2nd ed.). Cambridge, MA: MIT Press.
Matuschek, H., Kliegl, R., Vasishth, S., Baayen, H., & Bates, D. (2017). Balancing type I error and power in linear mixed models. Journal of Memory and Language, 94, 305-315. https://doi.org/10.1016/j.jml.2017.01.001
McElree, B., & Dosher, B. A. (1993). Serial retrieval processes in the recovery of order information. Journal of Experimental Psychology: General, 122(3), 291-315. https://doi.org/10.1037/0096-3445.122.3.291
Mecklinger, A. (2000). Interfacing mind and brain: A neurocognitive model of recognition memory. Psychophysiology, 37(5), 565-582. https://doi.org/10.1111/1469-8986.3750565
Morey, R. D., & Rouder, J. N. (2018). BayesFactor: Computation of bayes factors for common designs. R package version 0.9.12-4.2. Retrieved from https://CRAN.R-project.org/package=BayesFactor
Morton, J. (1968). Repeated items and decay in memory. Psychonomic Science, 10(6), 219-220. https://doi.org/10.3758/BF03331489
Murdock, B. B. (1974). Human memory: Theory and data. Oxford, UK: Lawrence Erlbaum.
Murdock, B. B. (1982). A theory for the storage and retrieval of item and associative information. Psychological Review, 89(6), 609-626. https://doi.org/10.1037/0033-295X.89.6.609
Murdock, B. B., Smith, D., & Bai, J. (2001). Judgments of frequency and recency in a distributed memory model. Journal of Mathematical Psychology, 45(4), 564-602. https://doi.org/10.1006/jmps.2000.1339
Muter, P. (1979). Response latencies in discriminations of recency. Journal of Experimental Psychology: Human Learning & Memory, 5(2), 160-169. https://doi.org/10.1037/0278-7393.5.2.160
Okada, R. (1971). Decision latencies in short-term recognition memory. Journal of Experimental Psychology, 90(1), 27-32. https://doi.org/10.1037/h0031354
Ouyang, G., Herzmann, G., Zhou, C., & Sommer, W. (2011). Residue iteration decomposition (RIDE): A new method to separate ERP components on the basis of latency variability in single trials. Psychophysiology, 48(12), 1631-1647. https://doi.org/10.1111/j.1469-8986.2011.01269.x
Park, J. L., & Donaldson, D. I. (2016). Investigating the relationship between implicit and explicit memory: Evidence that masked repetition priming speeds the onset of recollection. NeuroImage, 139, 8-16. https://doi.org/10.1016/j.neuroimage.2016.06.013
Paton, J. J., & Buonomano, D. V. (2018). The neural basis of timing: Distributed mechanisms for diverse functions. Neuron, 98(4), 687-705. https://doi.org/10.1016/j.neuron.2018.03.045
Rouder, J. N., Engelhardt, C. R., McCabe, S., & Morey, R. D. (2016). Model comparison in ANOVA. Psychonomic Bulletin & Review, 23(6), 1779-1786. https://doi.org/10.3758/s13423-016-1026-5
Rugg, M. D., & Curran, T. (2007). Event-related potentials and recognition memory. Trends in Cognitive Sciences, 11(6), 251-257. https://doi.org/10.1016/j.tics.2007.04.004
Rugg, M. D., & Nagy, M. E. (1989). Event-related potentials and recognition memory for words. Electroencephalography and Clinical Neurophysiology, 72(5), 395-406. https://doi.org/10.1016/0013-4694(89)90045-X
Shepard, R. N., & Teghtsoonian, M. (1961). Retention of information under conditions approaching a steady state. Journal of Experimental Psychology, 62(3), 302-309. https://doi.org/10.1037/h0048606
Shiffrin, R., Ratcliff, R., Murnane, K., & Nobel, P. (1993). TODAM and the list-strength and list-length effects: Comment on Murdock and Kahana (1993a). Journal of Experimental Psychology: Learning, Memory, & Cognition, 19(6), 1445-1449. https://doi.org/10.1037/0278-7393.19.6.1445
Singh, I., & Howard, M. W. (2017). Recency order judgments in short term memory: Replication and extension of Hacker (1980). bioRxiv. https://doi.org/10.1101/144733
Singh, I., Oliva, A., & Howard, M. (2017). Visual memories are stored along a compressed timeline. bioRxiv. https://doi.org/10.1101/101295
Smulders, F. T. (2010). Simplifying jackknifing of ERPs and getting more out of it: Retrieving estimates of participants' latencies. Psychophysiology, 47(2), 387-392. https://doi.org/10.1111/j.1469-8986.2009.00934.x
Tulving, E. (2002). Episodic memory: From mind to brain. Annual Review of Psychology, 53(1), 1-25. https://doi.org/10.1146/annurev.psych.53.100901.135114
Valentine, K. D., Buchanan, E. M., Scofield, J. E., & Beauchamp, M. T. (2019). Beyond p values: Utilizing multiple methods to evaluate evidence. Behaviormetrika, 46(1), 121-144. https://doi.org/10.1007/s41237-019-00078-4
Van Strien, J. W., Hagenbeek, R. E., Stam, C. J., Rombouts, S. A., & Barkhof, F. (2005). Changes in brain electrical activity during extended continuous word recognition. NeuroImage, 26(3), 952-959. https://doi.org/10.1016/j.neuroimage.2005.03.003
Yntema, D. B., & Trask, F. P. (1963). Recall as a search process. Journal of Verbal Learning and Verbal Behavior, 2(1), 65-74. https://doi.org/10.1016/S0022-5371(63)80069-9

Auteurs

John E Scofield (JE)

Department of Psychological Sciences, University of Missouri, Columbia, MO, USA.

Mason H Price (MH)

Department of Psychology, University of Oregon, Eugene, OR, USA.

Angélica Flores (A)

Department of Psychology, Universidad de las Américas Puebla, Cholula, Mexico.

Edgar C Merkle (EC)

Department of Psychological Sciences, University of Missouri, Columbia, MO, USA.

Jeffrey D Johnson (JD)

Department of Psychological Sciences, University of Missouri, Columbia, MO, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH