Insight into the antiviral activity of synthesized schizonepetin derivatives: A theoretical investigation.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
25 05 2020
25 05 2020
Historique:
received:
20
03
2020
accepted:
12
05
2020
entrez:
27
5
2020
pubmed:
27
5
2020
medline:
2
12
2020
Statut:
epublish
Résumé
The antiviral activity of schizonepetin derivatives 1A-1C were investigated via theoretical methods and results are compared with experimental results. The derivatives 1 A and 1 C have the highest and the lowest antiviral activity, respectively. The interactions of derivatives 1A-1C and BN-nanotube are examined. Results show that, derivatives 1A-1C can effectively interact with BN-nanotube (9, 9) and their adsorptions are favorable. The energy of derivative 1 A is higher than derivatives 1B and 1 C. The derivative 1 A has highest absolute µ, ω and ∆N values and it has lowest absolute ƞ value. Results show that, theoretical and experimental trends of antiviral activity of derivatives 1A-1C were similar, successfully.
Identifiants
pubmed: 32451388
doi: 10.1038/s41598-020-65866-5
pii: 10.1038/s41598-020-65866-5
pmc: PMC7248107
doi:
Substances chimiques
Antiviral Agents
0
Monoterpenes
0
schizonepetin
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
8599Références
Esrafili, M. D., Nematollahi, P. & Abdollahpour, H. Applied Surface Science A comparative DFT study on the CO oxidation reaction over Al- and Ge-embedded graphene as efficient metal-free catalysts. Appl. Surf. Sci. 378, 418–425 (2016).
doi: 10.1016/j.apsusc.2016.04.012
Duan, H. & Xu, C. Nanoporous PdZr surface alloy as highly active non-platinum electrocatalyst toward oxygen reduction reaction with unique structure stability and methanol-tolerance. J. Power Sources 316, 106–113 (2016).
doi: 10.1016/j.jpowsour.2016.03.076
Chen, R., Li, H., Chu, D. & Wang, G. Unraveling oxygen reduction reaction mechanisms on carbon-supported fe-phthalocyanine and co-phthalocyanine catalysts in alkaline solutions. J. Phys. Chem. C 113, 20689–20697 (2009).
doi: 10.1021/jp906408y
Exner, K. S. & Over, H. Kinetics of Electrocatalytic Reactions from First-Principles: A Critical Comparison with the Ab Initio Thermodynamics Approach. Acc. Chem. Res. 50, 1240–1247 (2017).
doi: 10.1021/acs.accounts.7b00077
Soliman, N. K. Factors affecting CO oxidation reaction over nanosized materials: A review. J. Mater. Res. Technol. 8, 2395–2407 (2019).
doi: 10.1016/j.jmrt.2018.12.012
Nigam, R., Habeeb, S., Priyadarshi, A. & Jaggi, N. Electrical conductivity of metal-carbon nanotube structures: Effect of length and doping. Bull. Mater. Sci. 37, 1047–1051 (2014).
doi: 10.1007/s12034-014-0043-0
Jin, J. et al. Insight into Room-Temperature Catalytic Oxidation of Nitric oxide by Cr
doi: 10.1021/acscatal.8b00081
Hou, H. et al. The effect of carbonization temperature of waste cigarette butts on Na - storage capacity of N - doped hard carbon anode. Chem. Pap., https://doi.org/10.1007/s11696-018-00674-w (2019).
Seyyedin, S. T., Sovizi, M. R. & Yaftian, M. R. Enhancing lithium – sulphur battery performance by copper oxide @ graphene oxide nanocomposite-modified cathode. 70, 1590–1599 (2016).
Esra, M. D. & Nurazar, R. Surface Science Methylamine adsorption and decomposition on B
Baei, M. T., Ahmadi, A. & Bagheri, Z. B-doping makes the carbon nanocones sensitive towards NO molecules. Phys. Lett. A 377, 107–111 (2012).
doi: 10.1016/j.physleta.2012.11.006
Exner, K. S. & Over, H. Beyond the Rate-Determining Step in the Oxygen Evolution Reaction over a Single-Crystalline IrO
doi: 10.1021/acscatal.9b01564
Hwang, J. et al. Mesoporous Ge/GeO
Martins, J., Thsayane, C., Morais, C. D, Ambrósio, N. & Almeida, F. D. Influence of current density and W concentration on Co – W alloys used as catalysts in electrodes for Li – O
Qiang, Z., Zhi, H., Yang, G. & Ping, Y. Synthesis of vanadium oxides nanosheets as anode material for asymmetric supercapacitor. Chem. Pap. 4 (2018).
Zhou, S., Yang, X., Pei, W., Zhao, J. & Du, A. Silicon Nanocages for Selective Carbon Dioxide Conversion under Visible Light Silicon Nanocages for Selective Carbon Dioxide Conversion under Visible Light., https://doi.org/10.1021/acs.jpcc.9b01784 (2019).
Natalia, V., Rahmawati, F., Wulandari, A. & Purwanto, A. Graphite/Li
Zhang, J., Gu, P., Xu, J., Xue, H. & Pang, H. High performance of electrochemical lithium storage batteries: ZnO-based nanomaterials for. 18578–18595, https://doi.org/10.1039/c6nr07207k (2016).
Exner, K. S. Is Thermodynamics a Good Descriptor for the Activity? Re-Investigation of Sabatier’s Principle by the Free Energy Diagram in Electrocatalysis. ACS Catal. 9, 5320–5329 (2019).
doi: 10.1021/acscatal.9b00732
Xu, L., Zhu, X., Feng, Y. & Ding, A. Study on antiviral activity of the alcohol extract of schizonepeta tenuifolia. Res. Tradit. Chin. Med. 16, 45–46 (2000).
Lu, J. et al. Effect of herba chizonepetae tenuifoliae lipids on acute inflammation of mice (in Chinese). J. Nanjing Univ. Tradit. Chin. Med. 6, 350–351 (2003).
Zhang, L., Zhang, M., Sun, E. & Ding, A. Anti-inflammatory, analgesic and antipyretic effects of schizonepetolide poly-lactic-co-glycolic acid nanoparticles (in Chinese). J. China Pharm. Univ. 39, 433–436 (2008).
doi: 10.1002/cjoc.200890082
Liu, D. et al. Acute and subacute toxicity and genotoxicity of schizonepetin, a naturally occurring monoterpene with antiviral activity. Food Chem. Toxicol. 50, 2256–2262 (2012).
doi: 10.1016/j.fct.2012.03.002
Bao, B. et al. Effects of schizonepetin on activity and mRNA expression of cytochrome p450 enzymes in rats. Int. J. Mol. Sci. 13, 17006–17018 (2012).
doi: 10.3390/ijms131217006
Geng, T. et al. Pharmacokinetics and tissue distribution of schizonepetin in rats. Fitoterapia 82, 1110–1117 (2011).
doi: 10.1016/j.fitote.2011.07.008