Sulfur hydrogen bonding and internal dynamics in the monohydrates of thenyl mercaptan and thenyl alcohol.
Journal
Physical chemistry chemical physics : PCCP
ISSN: 1463-9084
Titre abrégé: Phys Chem Chem Phys
Pays: England
ID NLM: 100888160
Informations de publication
Date de publication:
10 Jun 2020
10 Jun 2020
Historique:
pubmed:
27
5
2020
medline:
27
5
2020
entrez:
27
5
2020
Statut:
ppublish
Résumé
The monohydrates of thenyl alcohol and thenyl mercaptan have been probed in a supersonic jet expansion using chirped-pulse and Fabry-Perot Fourier-transform microwave spectroscopy. The rotational spectra revealed a single isomer for each of the dimers. The thenyl alcohol hydrate is stabilized by an O-HOw hydrogen bond between the alcohol and water, with water acting as a proton acceptor and additionally engaging in an Ow-Hπ interaction with the thenyl ring. Conversely, water behaves as a proton donor in the thenyl mercaptan hydrate, linking to the thiol group though an Ow-HS hydrogen bond and secondary Ow-Hπ interactions with the ring. In both dimers water retains internal mobility, as tunneling doublings in the spectrum confirm an internal rotation motion of water inside the cluster. The experimental results have been complemented with density-functional-theory molecular orbital calculations, binding energy decomposition and a topological analysis of the electronic density, providing a comparative description of the effects of hydrogen bonding of water to the alcohol and thiol groups in the dimers, relevant to understand hydrogen bonding to sulfur centers.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM