Soil fungal networks maintain local dominance of ectomycorrhizal trees.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
26 05 2020
26 05 2020
Historique:
received:
02
03
2020
accepted:
05
05
2020
entrez:
28
5
2020
pubmed:
28
5
2020
medline:
25
8
2020
Statut:
epublish
Résumé
The mechanisms regulating community composition and local dominance of trees in species-rich forests are poorly resolved, but the importance of interactions with soil microbes is increasingly acknowledged. Here, we show that tree seedlings that interact via root-associated fungal hyphae with soils beneath neighbouring adult trees grow faster and have greater survival than seedlings that are isolated from external fungal mycelia, but these effects are observed for species possessing ectomycorrhizas (ECM) and not arbuscular mycorrhizal (AM) fungi. Moreover, survival of naturally-regenerating AM seedlings over ten years is negatively related to the density of surrounding conspecific plants, while survival of ECM tree seedlings displays positive density dependence over this interval, and AM seedling roots contain greater abundance of pathogenic fungi than roots of ECM seedlings. Our findings show that neighbourhood interactions mediated by beneficial and pathogenic soil fungi regulate plant demography and community structure in hyperdiverse forests.
Identifiants
pubmed: 32457288
doi: 10.1038/s41467-020-16507-y
pii: 10.1038/s41467-020-16507-y
pmc: PMC7250933
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2636Références
Wright, J. S. Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130, 1–14 (2002).
pubmed: 28547014
doi: 10.1007/s004420100809
HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M. & Mayfield, M. M. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 43, 227–248 (2012).
doi: 10.1146/annurev-ecolsys-110411-160411
Huston, M. A. Biological Diversity: the Coexistence of Species on Changing Landscapes. (Cambridge University Press, Cambridge, 1994).
Richards, P. W. The Tropical Rain Forest. 2nd edn (Cambridge University Press, Cambridge, 1996).
Peh, K. S. H., Lewis, S. L. & Lloyd, J. Mechanisms of monodominance in diverse tropical tree-dominated systems. J. Ecol. 99, 891–898 (2011).
doi: 10.1111/j.1365-2745.2011.01827.x
Bever, J. D., Mangan, S. A. & Alexander, H. M. Maintenance of plant species diversity by pathogens. Annu. Rev. Ecol. Evol. Syst. 46, 305–325 (2015).
doi: 10.1146/annurev-ecolsys-112414-054306
Bennett, J. A. et al. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science 355, 181–184 (2017).
pubmed: 28082590
doi: 10.1126/science.aai8212
Hart, M. M., Reader, R. J. & Klironomos, J. N. Plant coexistence mediated by arbuscular mycorrhizal fungi. Trends Ecol. Evol. 18, 418–423 (2003).
doi: 10.1016/S0169-5347(03)00127-7
Packer, A. & Clay, K. Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature 404, 278–281 (2000).
pubmed: 10749209
doi: 10.1038/35005072
Bagchi, R. et al. Testing the Janzen-Connell mechanism: pathogens cause overcompensating density dependence in a tropical tree. Ecol. Lett. 13, 1262–1269 (2010).
pubmed: 20718845
doi: 10.1111/j.1461-0248.2010.01520.x
Liang, M. et al. Adult trees cause density-dependent mortality in conspecific seedlings by regulating the frequency of pathogenic soil fungi. Ecol. Lett. 19, 1448–1456 (2016).
pubmed: 27790825
doi: 10.1111/ele.12694
Liu, X. et al. Experimental evidence for a phylogenetic Janzen–Connell effect in a subtropical forest. Ecol. Lett. 15, 111–118 (2012).
pubmed: 22082078
doi: 10.1111/j.1461-0248.2011.01715.x
Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).
pubmed: 31092941
doi: 10.1038/s41586-019-1128-0
Chen, L. et al. Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science 366, 124–128 (2019).
pubmed: 31604314
doi: 10.1126/science.aau1361
Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis. 3rd edn. (Academic Press, London, UK, 2008).
Laliberté, E., Lambers, H., Burgess, T. I. & Wright, S. J. Phosphorus limitation, soil-borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands. N. Phytol. 206, 507–521 (2015).
doi: 10.1111/nph.13203
Teste, F. P. et al. Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands. Science 355, 173–176 (2017).
pubmed: 28082588
doi: 10.1126/science.aai8291
Liu, X. et al. Partitioning of soil phosphorus among arbuscular and ectomycorrhizal trees in tropical and subtropical forests. Ecol. Lett. 21, 713–723 (2018).
pubmed: 29536604
doi: 10.1111/ele.12939
Selosse, M. A., Richard, F., He, X. & Simard, S. W. Mycorrhizal networks: des liaisons dangereuses? Trends Ecol. Evol. 21, 621–628 (2006).
pubmed: 16843567
doi: 10.1016/j.tree.2006.07.003
Simard, S. W. et al. Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388, 579–582 (1997).
doi: 10.1038/41557
Klein, T., Siegwolf, R. T. W. & Körner, C. Belowground carbon trade among tall trees in a temperate forest. Science 352, 342–344 (2016).
pubmed: 27081070
doi: 10.1126/science.aad6188
Nara, K. Ectomycorrhizal networks and seedling establishment during early primary succession. N. Phytol. 169, 169–178 (2006).
doi: 10.1111/j.1469-8137.2005.01545.x
Johnson, D. & Gilbert, L. Interplant signaling through hyphal networks. N. Phytol. 205, 1448–1453 (2015).
doi: 10.1111/nph.13115
Corrales, A., Mangan, S. A., Turner, B. L. & Dalling, J. W. An ectomycorrhizal nitrogen economy facilitates monodominance in a neotropical forest. Ecol. Lett. 19, 383–392 (2016).
pubmed: 26833573
doi: 10.1111/ele.12570
Tedersoo, L., Bahram, M. & Zobel, M. How mycorrhizal associations drive plant population and community biology. Science 367, eaba1223 (2020).
pubmed: 32079744
doi: 10.1126/science.aba1223
Johnson, D., Leake, J. R. & Read, D. J. Novel in-growth core system enables functional studies of grassland mycorrhizal mycelial networks. N. Phytol. 152, 555–562 (2001).
doi: 10.1046/j.0028-646X.2001.00273.x
Connell, J. H. & Lowman, M. D. Low-diversity tropical rain forests: some possible mechanisms for their existence. Am. Nat. 134, 88–119 (1989).
doi: 10.1086/284967
Nasto, M. K. et al. Nutrient acquisition, soil phosphorus partitioning and competition among trees in a lowland tropical rain forest. N. Phytol. 214, 1506–1517 (2017).
doi: 10.1111/nph.14494
Ahmad‐Ramli, M. F., Cornulier, T. & Johnson, D. Partitioning of soil phosphorus regulates competition between Vaccinium vitis‐idaea and Deschampsia cespitosa. Ecol. Evol. 3, 4243–4252 (2013).
pubmed: 24324874
doi: 10.1002/ece3.771
pmcid: 3853568
Ceulemans, T. et al. Phosphorus resource partitioning shapes phosphorus acquisition and plant species abundance in grasslands. Nat. Plants 3, 16224 (2017).
pubmed: 28134925
doi: 10.1038/nplants.2016.224
Garrett, S. D. Biology of Root-infecting Fungi. (Cambridge University Press, Cambridge, 1956).
doi: 10.1097/00010694-195607000-00011
Peay, K. G. et al. Lack of host specificity leads to independent assortment of dipterocarps and ectomycorrhizal fungi across a soil fertility gradient. Ecol. Lett. 18, 807–816 (2015).
pubmed: 26032408
doi: 10.1111/ele.12459
Kiers, E. T., Lovelock, C. E., Krueger, E. L. & Herre, E. A. Differential effects of tropical arbuscular mycorrhizal fungal inocula on root colonization and tree seedling growth: implications for tropical forest diversity. Ecol. Lett. 3, 106–113 (2000).
doi: 10.1046/j.1461-0248.2000.00126.x
Bidartondo, M. L., Redecker, D., Hijri, I. & Wiemken, A. Epiparasitic plants specialized on arbuscular mycorrhizal fungi. Nature 419, 389–392 (2002).
pubmed: 12353033
doi: 10.1038/nature01054
van der Linde, S. et al. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 558, 243–248 (2018).
pubmed: 29875410
doi: 10.1038/s41586-018-0189-9
Gao, C. et al. Host plant genus‐level diversity is the best predictor of ectomycorrhizal fungal diversity in a Chinese subtropical forest. Mol. Ecol. 22, 3403–3414 (2013).
pubmed: 24624421
doi: 10.1111/mec.12297
Liang, M. et al. In situ seedling growth and survival of ectomycorrhizal and arbuscular trees in a subtropical forest in China. NERC Environ. Inf. Data Cent. (Dataset). https://doi.org/10.5285/f1d17e61-bb6c-47a9-a648-062c63ea7f16 (2020).
doi: 10.5285/f1d17e61-bb6c-47a9-a648-062c63ea7f16
Brundrett, M. C. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320, 37–77 (2009).
doi: 10.1007/s11104-008-9877-9
Nottingham, A. T., Turner, B. L., Winter, K., van der Heijden, M. G. A. & Tanner, E. V. J. Arbuscular mycorrhizal mycelial respiration in a moist tropical forest. N. Phytol. 186, 957–967 (2010).
doi: 10.1111/j.1469-8137.2010.03226.x
Lavahun, M. F. E., Joergensen, R. G. & Meyer, B. Activity and biomass of soil microorganisms at different depths. Biol. Fertil. Soils 23, 38–42 (1996).
doi: 10.1007/BF00335816
McGonigle, T. P., Miller, M. H., Evans, D. G., Fairchild, G. L. & Swan, J. A. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol. 115, 495–501 (1990).
doi: 10.1111/j.1469-8137.1990.tb00476.x
Allen, G. C., Flores-Vergara, M. A., Krasynanski, S., Kumar, S. & Thompson, W. F. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat. Protoc. 1, 2320–2325 (2006).
pubmed: 17406474
doi: 10.1038/nprot.2006.384
Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).
pubmed: 2786419
doi: 10.1128/AEM.01541-09
pmcid: 2786419
Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).
pubmed: 21700674
doi: 10.1093/bioinformatics/btr381
pmcid: 3150044
Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996 (2013).
pubmed: 23955772
doi: 10.1038/nmeth.2604
Abarenkov, K. et al. The UNITE database for molecular identification of fungi - recent updates and future perspectives. New Phytol. 186, 281–285 (2010).
pubmed: 20409185
doi: 10.1111/j.1469-8137.2009.03160.x
Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).
doi: 10.1016/j.funeco.2015.06.006
Pinheiro, J. C. & Bates, D. M. Mixed-effects Models in S and S-PLUS (Springer, New York, 2000).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
doi: 10.18637/jss.v067.i01