APN-mediated phosphorylation of BCKDK promotes hepatocellular carcinoma metastasis and proliferation via the ERK signaling pathway.
Animals
Base Sequence
CD13 Antigens
/ metabolism
Carcinoma, Hepatocellular
/ genetics
Cell Line, Tumor
Cell Proliferation
Disease Progression
Female
Gene Expression Regulation, Neoplastic
Humans
Liver Neoplasms
/ genetics
MAP Kinase Signaling System
Mice, Inbred NOD
Mice, SCID
Neoplasm Metastasis
Phosphorylation
Phosphoserine
/ metabolism
Protein Binding
Protein Kinases
/ metabolism
Up-Regulation
/ genetics
Journal
Cell death & disease
ISSN: 2041-4889
Titre abrégé: Cell Death Dis
Pays: England
ID NLM: 101524092
Informations de publication
Date de publication:
26 05 2020
26 05 2020
Historique:
received:
28
12
2019
accepted:
14
05
2020
revised:
13
05
2020
entrez:
28
5
2020
pubmed:
28
5
2020
medline:
13
3
2021
Statut:
epublish
Résumé
Hepatocellular carcinoma (HCC) is one of the most prevalent human malignancies worldwide and has high morbidity and mortality. Elucidating the molecular mechanisms underlying HCC recurrence and metastasis is critical to identify new therapeutic targets. This study aimed to determine the roles of aminopeptidase N (APN, also known as CD13) in HCC proliferation and metastasis and its underlying mechanisms. We detected APN expression in clinical samples and HCC cell lines using immunohistochemistry, flow cytometry, real-time PCR, and enzyme activity assays. The effects of APN on HCC metastasis and proliferation were verified in both in vitro and in vivo models. RNA-seq, phosphoproteomic, western blot, point mutation, co-immunoprecipitation, and proximity ligation assays were performed to reveal the potential mechanisms. We found that APN was frequently upregulated in HCC tumor tissues and high-metastatic cell lines. Knockout of APN inhibited HCC cell metastasis and proliferation in vitro and in vivo. Functional studies suggested that a loss of APN impedes the ERK signaling pathway in HCC cells. Mechanistically, we found that APN might mediate the phosphorylation at serine 31 of BCKDK (BCKDK
Identifiants
pubmed: 32457292
doi: 10.1038/s41419-020-2610-1
pii: 10.1038/s41419-020-2610-1
pmc: PMC7249043
doi:
Substances chimiques
Phosphoserine
17885-08-4
Protein Kinases
EC 2.7.-
(3-methyl-2-oxobutanoate dehydrogenase (lipoamide)) kinase
EC 2.7.11.4
CD13 Antigens
EC 3.4.11.2
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
396Références
Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).
pubmed: 30207593
doi: 10.3322/caac.21492
Zheng, R. S. et al. Report of cancer epidemiology in China, 2015. Chin. J. Oncol. 41, 19–28 (2019).
Valastyan, S. & Weinberg, R. A. Tumor metastasis: molecular insights and evolving paradigms. Cell 147, 275–292 (2011).
pubmed: 22000009
pmcid: 3261217
doi: 10.1016/j.cell.2011.09.024
Aravalli, R. N., Cressman, E. N. & Steer, C. J. Cellular and molecular mechanisms of hepatocellular carcinoma: an update. Arch. Toxicol. 87, 227–247 (2013).
pubmed: 23007558
doi: 10.1007/s00204-012-0931-2
Xu, X. F. et al. Risk factors, patterns, and outcomes of late recurrence after liver resection for hepatocellular carcinoma: a multicenter study from China. JAMA Surg. 154, 209–217 (2019).
pubmed: 30422241
doi: 10.1001/jamasurg.2018.4334
Mina-Osorio, P. The moonlighting enzyme CD13: old and new functions to target. Trends Mol. Med. 14, 361–371 (2008).
pubmed: 18603472
pmcid: 7106361
doi: 10.1016/j.molmed.2008.06.003
Zhang, X. & Xu, W. Aminopeptidase N (APN/CD13) as a target for anti-cancer agent design. Curr. Med. Chem. 15, 2850–2865 (2008).
pubmed: 18991640
doi: 10.2174/092986708786242840
Wickstrom, M., Larsson, R., Nygren, P. & Gullbo, J. Aminopeptidase N (CD13) as a target for cancer chemotherapy. Cancer Sci. 102, 501–508 (2011).
pubmed: 21205077
pmcid: 7188354
doi: 10.1111/j.1349-7006.2010.01826.x
Sun, J. H., Luo, Q., Liu, L. L. & Song, G. B. Liver cancer stem cell markers: Progression and therapeutic implications. World J. Gastroenterol. 22, 3547–3557 (2016).
pubmed: 27053846
pmcid: 4814640
doi: 10.3748/wjg.v22.i13.3547
Haraguchi, N. et al. CD13 is a therapeutic target in human liver cancer stem cells. J. Clin. Invest. 120, 3326–3339 (2010).
pubmed: 20697159
pmcid: 2929722
doi: 10.1172/JCI42550
Cohen, P. The origins of protein phosphorylation. Nat. Cell Biol. 4, E127–E130 (2002).
pubmed: 11988757
doi: 10.1038/ncb0502-e127
Vlastaridis, P. et al. Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. Gigascience 6, 1–11 (2017).
pubmed: 28327990
pmcid: 5466708
doi: 10.1093/gigascience/giw015
Doering, C. B., Williams, I. R. & Danner, D. J. Controlled overexpression of BCKD kinase expression: metabolic engineering applied to BCAA metabolism in a mammalian system. Metab. Eng. 2, 349–356 (2000).
pubmed: 11120646
doi: 10.1006/mben.2000.0164
Davie, J. R. et al. Expression and characterization of branched-chain α-ketoacid dehydrogenase kinase from the rat. Is it a histidine-protein kinase? J. Biol. Chem. 270, 19861–19867 (1995).
pubmed: 7649998
doi: 10.1074/jbc.270.34.19861
Cheon, S. et al. The ubiquitin ligase UBE3B, disrupted in intellectual disability and absent speech, regulates metabolic pathways by targeting BCKDK. Proc. Natl Acad. Sci. USA 116, 3662–3667 (2019).
pubmed: 30808755
doi: 10.1073/pnas.1818751116
Zhou, M. et al. Targeting BCAA catabolism to treat obesity-associated insulin resistance. Diabetes 68, 1730–1746 (2019).
pubmed: 31167878
doi: 10.2337/db18-0927
Uddin, G. M. et al. Impaired branched chain amino acid oxidation contributes to cardiac insulin resistance in heart failure. Cardiovasc. Diabetol. 18, 86 (2019).
pubmed: 31277657
pmcid: 6610921
doi: 10.1186/s12933-019-0892-3
Novarino, G. et al. Mutations in BCKD-kinase lead to a potentially treatable form of autism with epilepsy. Science 338, 394–397 (2012).
pubmed: 22956686
pmcid: 3704165
doi: 10.1126/science.1224631
Menzies, F. M. et al. Puromycin-sensitive aminopeptidase protects against aggregation-prone proteins via autophagy. Hum. Mol. Genet. 19, 4573–4586 (2010).
pubmed: 20829225
pmcid: 2972693
doi: 10.1093/hmg/ddq385
Zhao, S. et al. Inhibition of LTA4H by bestatin in human and mouse colorectal cancer. EBioMedicine 44, 361–374 (2019).
pubmed: 31085102
pmcid: 6604047
doi: 10.1016/j.ebiom.2019.05.008
Sun, C. et al. Oncofetal gene SALL4 reactivation by hepatitis B virus counteracts miR-200c in PD-L1-induced T cell exhaustion. Nat. Commun. 9, 1241 (2018).
pubmed: 29593314
pmcid: 5871883
doi: 10.1038/s41467-018-03584-3
Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).
pubmed: 25075903
pmcid: 4486245
doi: 10.1038/nmeth.3047
Guo, Y. et al. Cytotoxic necrotizing factor 1 promotes prostate cancer progression through activating the Cdc42-PAK1 axis. J. Pathol. 243, 208–219 (2017).
pubmed: 28707808
doi: 10.1002/path.4940
Tada, H. et al. Systemic IFN-beta gene therapy results in long-term survival in mice with established colorectal liver metastases. J. Clin. Investig. 108, 83–95 (2001).
pubmed: 11435460
Wang, J. et al. A single transcription factor promotes both yield and immunity in rice. Science 361, 1026–1028 (2018).
pubmed: 30190406
doi: 10.1126/science.aat7675
Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).
pubmed: 30395289
doi: 10.1093/nar/gky1106
Li, Y. et al. HMGA2 induces transcription factor Slug expression to promote epithelial-to-mesenchymal transition and contributes to colon cancer progression. Cancer Lett. 355, 130–140 (2014).
pubmed: 25218351
doi: 10.1016/j.canlet.2014.09.007
Ganesan, R., Mallets, E. & Gomez-Cambronero, J. The transcription factors Slug (SNAI2) and Snail (SNAI1) regulate phospholipase D (PLD) promoter in opposite ways towards cancer cell invasion. Mol. Oncol. 10, 663–676 (2016).
pubmed: 26781944
doi: 10.1016/j.molonc.2015.12.006
Lu, J. T., Zhao, W. D., He, W. & Wei, W. Hedgehog signaling pathway mediates invasion and metastasis of hepatocellular carcinoma via ERK pathway. Acta Pharm. Sin. 33, 691–700 (2012).
doi: 10.1038/aps.2012.24
Cheng, Y. et al. Induction of connective tissue growth factor expression by hypoxia in human lung fibroblasts via the MEKK1/MEK1/ERK1/GLI-1/GLI-2 and AP-1 pathways. PLoS ONE 11, e0160593 (2016).
pubmed: 27486656
pmcid: 4972311
doi: 10.1371/journal.pone.0160593
Schnidar, H. et al. Epidermal growth factor receptor signaling synergizes with Hedgehog/GLI in oncogenic transformation via activation of the MEK/ERK/JUN pathway. Cancer Res. 69, 1284–1292 (2009).
pubmed: 19190345
pmcid: 3035872
doi: 10.1158/0008-5472.CAN-08-2331
Virtakoivu, R. et al. Vimentin-ERK signaling uncouples slug gene regulatory function. Cancer Res. 75, 2349–2362 (2015).
pubmed: 25855378
doi: 10.1158/0008-5472.CAN-14-2842
Ren, H. et al. SMYD2-OE promotes oxaliplatin resistance in colon cancer through MDR1/P-glycoprotein via MEK/ERK/AP1 pathway. Onco Targets Ther. 12, 2585–2594 (2019).
pubmed: 31040701
pmcid: 6459156
doi: 10.2147/OTT.S186806
Tarcic, G. et al. EGR1 and the ERK-ERF axis drive mammary cell migration in response to EGF. FASEB J. 26, 1582–1592 (2012).
pubmed: 22198386
pmcid: 3316897
doi: 10.1096/fj.11-194654
Rong, R. et al. Serine 518 phosphorylation modulates merlin intramolecular association and binding to critical effectors important for NF2 growth suppression. Oncogene 23, 8447–8454 (2004).
pubmed: 15378014
doi: 10.1038/sj.onc.1207794
Xue, P. et al. BCKDK of BCAA catabolism cross-talking with the mapk pathway promotes tumorigenesis of colorectal cancer. EBioMedicine 20, 50–60 (2017).
pubmed: 28501528
pmcid: 5478211
doi: 10.1016/j.ebiom.2017.05.001
Bidard, F. C., Pierga, J. Y., Soria, J. C. & Thiery, J. P. Translating metastasis-related biomarkers to the clinic-progress and pitfalls. Nat. Rev. Clin. Oncol. 10, 169–179 (2013).
pubmed: 23381003
doi: 10.1038/nrclinonc.2013.4
Lee, J. et al. Novel human aminopeptidase N inhibitors: discovery and optimization of subsite binding interactions. J. Med. Chem. 62, 7185–7209 (2019).
pubmed: 31251594
doi: 10.1021/acs.jmedchem.9b00757
Tokuhara, T. et al. Clinical significance of aminopeptidase N in non-small cell lung cancer. Clin. Cancer Res. 12, 3971–3978 (2006).
pubmed: 16818694
doi: 10.1158/1078-0432.CCR-06-0338
Hashida, H. et al. Aminopeptidase N is involved in cell motility and angiogenesis: its clinical significance in human colon cancer. Gastroenterology 122, 376–386 (2002).
pubmed: 11832452
doi: 10.1053/gast.2002.31095
Kehlen, A., Lendeckel, U., Dralle, H., Langner, J. & Hoang-Vu, C. Biological significance of aminopeptidase N/CD13 in thyroid carcinomas. Cancer Res. 63, 8500–8506 (2003).
pubmed: 14679016
Castelli, G., Pelosi, E. & Testa, U. Liver cancer: molecular characterization, clonal evolution and cancer stem cells. Cancers (Basel) 9, 127 (2017).
doi: 10.3390/cancers9090127
Takeishi, K. et al. Diacylglycerol kinase alpha enhances hepatocellular carcinoma progression by activation of Ras-Raf-MEK-ERK pathway. J. Hepatol. 57, 77–83 (2012).
pubmed: 22425622
doi: 10.1016/j.jhep.2012.02.026
Delire, B. & Starkel, P. The Ras/MAPK pathway and hepatocarcinoma: pathogenesis and therapeutic implications. Eur. J. Clin. Invest. 45, 609–623 (2015).
pubmed: 25832714
doi: 10.1111/eci.12441
Saxena, N. K. et al. Concomitant activation of the JAK/STAT, PI3K/AKT, and ERK signaling is involved in leptin-mediated promotion of invasion and migration of hepatocellular carcinoma cells. Cancer Res. 67, 2497–2507 (2007).
pubmed: 17363567
pmcid: 2925446
doi: 10.1158/0008-5472.CAN-06-3075
Whittaker, S., Marais, R. & Zhu, A. X. The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene 29, 4989–5005 (2010).
pubmed: 20639898
doi: 10.1038/onc.2010.236
Chambard, J. C., Lefloch, R., Pouyssegur, J. & Lenormand, P. ERK implication in cell cycle regulation. Biochim. Biophys. Acta 1773, 1299–1310 (2007).
pubmed: 17188374
doi: 10.1016/j.bbamcr.2006.11.010
Aoki, K. et al. Propagating wave of ERK activation orients collective cell migration. Dev. Cell 43, 305–317 e305 (2017).
pubmed: 29112851
doi: 10.1016/j.devcel.2017.10.016
Roux, P. P. & Blenis, J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev. 68, 320–344 (2004).
pubmed: 15187187
pmcid: 419926
doi: 10.1128/MMBR.68.2.320-344.2004
Dhillon, A. S., Hagan, S., Rath, O. & Kolch, W. MAP kinase signalling pathways in cancer. Oncogene 26, 3279–3290 (2007).
pubmed: 17496922
doi: 10.1038/sj.onc.1210421
Patel, A. L. & Shvartsman, S. Y. Outstanding questions in developmental ERK signaling. Development 145, dev143818 (2018).
pubmed: 30049820
pmcid: 6078328
doi: 10.1242/dev.143818
Garcia-Cazorla, A. et al. Two novel mutations in the BCKDK (branched-chain keto-acid dehydrogenase kinase) gene are responsible for a neurobehavioral deficit in two pediatric unrelated patients. Hum. Mutat. 35, 470–477 (2014).
pubmed: 24449431
doi: 10.1002/humu.22513
Burrage, L. C., Nagamani, S. C., Campeau, P. M. & Lee, B. H. Branched-chain amino acid metabolism: from rare Mendelian diseases to more common disorders. Hum. Mol. Genet. 23, R1–R8 (2014).
pubmed: 24651065
pmcid: 4170715
doi: 10.1093/hmg/ddu123
Zhang, X., Fang, H., Zhang, J., Yuan, Y. & Xu, W. Recent advance in aminopeptidase N (APN/CD13) inhibitor research. Curr. Med. Chem. 18, 5011–5021 (2011).
pubmed: 22050749
doi: 10.2174/092986711797535155