APN-mediated phosphorylation of BCKDK promotes hepatocellular carcinoma metastasis and proliferation via the ERK signaling pathway.


Journal

Cell death & disease
ISSN: 2041-4889
Titre abrégé: Cell Death Dis
Pays: England
ID NLM: 101524092

Informations de publication

Date de publication:
26 05 2020
Historique:
received: 28 12 2019
accepted: 14 05 2020
revised: 13 05 2020
entrez: 28 5 2020
pubmed: 28 5 2020
medline: 13 3 2021
Statut: epublish

Résumé

Hepatocellular carcinoma (HCC) is one of the most prevalent human malignancies worldwide and has high morbidity and mortality. Elucidating the molecular mechanisms underlying HCC recurrence and metastasis is critical to identify new therapeutic targets. This study aimed to determine the roles of aminopeptidase N (APN, also known as CD13) in HCC proliferation and metastasis and its underlying mechanisms. We detected APN expression in clinical samples and HCC cell lines using immunohistochemistry, flow cytometry, real-time PCR, and enzyme activity assays. The effects of APN on HCC metastasis and proliferation were verified in both in vitro and in vivo models. RNA-seq, phosphoproteomic, western blot, point mutation, co-immunoprecipitation, and proximity ligation assays were performed to reveal the potential mechanisms. We found that APN was frequently upregulated in HCC tumor tissues and high-metastatic cell lines. Knockout of APN inhibited HCC cell metastasis and proliferation in vitro and in vivo. Functional studies suggested that a loss of APN impedes the ERK signaling pathway in HCC cells. Mechanistically, we found that APN might mediate the phosphorylation at serine 31 of BCKDK (BCKDK

Identifiants

pubmed: 32457292
doi: 10.1038/s41419-020-2610-1
pii: 10.1038/s41419-020-2610-1
pmc: PMC7249043
doi:

Substances chimiques

Phosphoserine 17885-08-4
Protein Kinases EC 2.7.-
(3-methyl-2-oxobutanoate dehydrogenase (lipoamide)) kinase EC 2.7.11.4
CD13 Antigens EC 3.4.11.2

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

396

Références

Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).
pubmed: 30207593 doi: 10.3322/caac.21492
Zheng, R. S. et al. Report of cancer epidemiology in China, 2015. Chin. J. Oncol. 41, 19–28 (2019).
Valastyan, S. & Weinberg, R. A. Tumor metastasis: molecular insights and evolving paradigms. Cell 147, 275–292 (2011).
pubmed: 22000009 pmcid: 3261217 doi: 10.1016/j.cell.2011.09.024
Aravalli, R. N., Cressman, E. N. & Steer, C. J. Cellular and molecular mechanisms of hepatocellular carcinoma: an update. Arch. Toxicol. 87, 227–247 (2013).
pubmed: 23007558 doi: 10.1007/s00204-012-0931-2
Xu, X. F. et al. Risk factors, patterns, and outcomes of late recurrence after liver resection for hepatocellular carcinoma: a multicenter study from China. JAMA Surg. 154, 209–217 (2019).
pubmed: 30422241 doi: 10.1001/jamasurg.2018.4334
Mina-Osorio, P. The moonlighting enzyme CD13: old and new functions to target. Trends Mol. Med. 14, 361–371 (2008).
pubmed: 18603472 pmcid: 7106361 doi: 10.1016/j.molmed.2008.06.003
Zhang, X. & Xu, W. Aminopeptidase N (APN/CD13) as a target for anti-cancer agent design. Curr. Med. Chem. 15, 2850–2865 (2008).
pubmed: 18991640 doi: 10.2174/092986708786242840
Wickstrom, M., Larsson, R., Nygren, P. & Gullbo, J. Aminopeptidase N (CD13) as a target for cancer chemotherapy. Cancer Sci. 102, 501–508 (2011).
pubmed: 21205077 pmcid: 7188354 doi: 10.1111/j.1349-7006.2010.01826.x
Sun, J. H., Luo, Q., Liu, L. L. & Song, G. B. Liver cancer stem cell markers: Progression and therapeutic implications. World J. Gastroenterol. 22, 3547–3557 (2016).
pubmed: 27053846 pmcid: 4814640 doi: 10.3748/wjg.v22.i13.3547
Haraguchi, N. et al. CD13 is a therapeutic target in human liver cancer stem cells. J. Clin. Invest. 120, 3326–3339 (2010).
pubmed: 20697159 pmcid: 2929722 doi: 10.1172/JCI42550
Cohen, P. The origins of protein phosphorylation. Nat. Cell Biol. 4, E127–E130 (2002).
pubmed: 11988757 doi: 10.1038/ncb0502-e127
Vlastaridis, P. et al. Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. Gigascience 6, 1–11 (2017).
pubmed: 28327990 pmcid: 5466708 doi: 10.1093/gigascience/giw015
Doering, C. B., Williams, I. R. & Danner, D. J. Controlled overexpression of BCKD kinase expression: metabolic engineering applied to BCAA metabolism in a mammalian system. Metab. Eng. 2, 349–356 (2000).
pubmed: 11120646 doi: 10.1006/mben.2000.0164
Davie, J. R. et al. Expression and characterization of branched-chain α-ketoacid dehydrogenase kinase from the rat. Is it a histidine-protein kinase? J. Biol. Chem. 270, 19861–19867 (1995).
pubmed: 7649998 doi: 10.1074/jbc.270.34.19861
Cheon, S. et al. The ubiquitin ligase UBE3B, disrupted in intellectual disability and absent speech, regulates metabolic pathways by targeting BCKDK. Proc. Natl Acad. Sci. USA 116, 3662–3667 (2019).
pubmed: 30808755 doi: 10.1073/pnas.1818751116
Zhou, M. et al. Targeting BCAA catabolism to treat obesity-associated insulin resistance. Diabetes 68, 1730–1746 (2019).
pubmed: 31167878 doi: 10.2337/db18-0927
Uddin, G. M. et al. Impaired branched chain amino acid oxidation contributes to cardiac insulin resistance in heart failure. Cardiovasc. Diabetol. 18, 86 (2019).
pubmed: 31277657 pmcid: 6610921 doi: 10.1186/s12933-019-0892-3
Novarino, G. et al. Mutations in BCKD-kinase lead to a potentially treatable form of autism with epilepsy. Science 338, 394–397 (2012).
pubmed: 22956686 pmcid: 3704165 doi: 10.1126/science.1224631
Menzies, F. M. et al. Puromycin-sensitive aminopeptidase protects against aggregation-prone proteins via autophagy. Hum. Mol. Genet. 19, 4573–4586 (2010).
pubmed: 20829225 pmcid: 2972693 doi: 10.1093/hmg/ddq385
Zhao, S. et al. Inhibition of LTA4H by bestatin in human and mouse colorectal cancer. EBioMedicine 44, 361–374 (2019).
pubmed: 31085102 pmcid: 6604047 doi: 10.1016/j.ebiom.2019.05.008
Sun, C. et al. Oncofetal gene SALL4 reactivation by hepatitis B virus counteracts miR-200c in PD-L1-induced T cell exhaustion. Nat. Commun. 9, 1241 (2018).
pubmed: 29593314 pmcid: 5871883 doi: 10.1038/s41467-018-03584-3
Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).
pubmed: 25075903 pmcid: 4486245 doi: 10.1038/nmeth.3047
Guo, Y. et al. Cytotoxic necrotizing factor 1 promotes prostate cancer progression through activating the Cdc42-PAK1 axis. J. Pathol. 243, 208–219 (2017).
pubmed: 28707808 doi: 10.1002/path.4940
Tada, H. et al. Systemic IFN-beta gene therapy results in long-term survival in mice with established colorectal liver metastases. J. Clin. Investig. 108, 83–95 (2001).
pubmed: 11435460
Wang, J. et al. A single transcription factor promotes both yield and immunity in rice. Science 361, 1026–1028 (2018).
pubmed: 30190406 doi: 10.1126/science.aat7675
Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).
pubmed: 30395289 doi: 10.1093/nar/gky1106
Li, Y. et al. HMGA2 induces transcription factor Slug expression to promote epithelial-to-mesenchymal transition and contributes to colon cancer progression. Cancer Lett. 355, 130–140 (2014).
pubmed: 25218351 doi: 10.1016/j.canlet.2014.09.007
Ganesan, R., Mallets, E. & Gomez-Cambronero, J. The transcription factors Slug (SNAI2) and Snail (SNAI1) regulate phospholipase D (PLD) promoter in opposite ways towards cancer cell invasion. Mol. Oncol. 10, 663–676 (2016).
pubmed: 26781944 doi: 10.1016/j.molonc.2015.12.006
Lu, J. T., Zhao, W. D., He, W. & Wei, W. Hedgehog signaling pathway mediates invasion and metastasis of hepatocellular carcinoma via ERK pathway. Acta Pharm. Sin. 33, 691–700 (2012).
doi: 10.1038/aps.2012.24
Cheng, Y. et al. Induction of connective tissue growth factor expression by hypoxia in human lung fibroblasts via the MEKK1/MEK1/ERK1/GLI-1/GLI-2 and AP-1 pathways. PLoS ONE 11, e0160593 (2016).
pubmed: 27486656 pmcid: 4972311 doi: 10.1371/journal.pone.0160593
Schnidar, H. et al. Epidermal growth factor receptor signaling synergizes with Hedgehog/GLI in oncogenic transformation via activation of the MEK/ERK/JUN pathway. Cancer Res. 69, 1284–1292 (2009).
pubmed: 19190345 pmcid: 3035872 doi: 10.1158/0008-5472.CAN-08-2331
Virtakoivu, R. et al. Vimentin-ERK signaling uncouples slug gene regulatory function. Cancer Res. 75, 2349–2362 (2015).
pubmed: 25855378 doi: 10.1158/0008-5472.CAN-14-2842
Ren, H. et al. SMYD2-OE promotes oxaliplatin resistance in colon cancer through MDR1/P-glycoprotein via MEK/ERK/AP1 pathway. Onco Targets Ther. 12, 2585–2594 (2019).
pubmed: 31040701 pmcid: 6459156 doi: 10.2147/OTT.S186806
Tarcic, G. et al. EGR1 and the ERK-ERF axis drive mammary cell migration in response to EGF. FASEB J. 26, 1582–1592 (2012).
pubmed: 22198386 pmcid: 3316897 doi: 10.1096/fj.11-194654
Rong, R. et al. Serine 518 phosphorylation modulates merlin intramolecular association and binding to critical effectors important for NF2 growth suppression. Oncogene 23, 8447–8454 (2004).
pubmed: 15378014 doi: 10.1038/sj.onc.1207794
Xue, P. et al. BCKDK of BCAA catabolism cross-talking with the mapk pathway promotes tumorigenesis of colorectal cancer. EBioMedicine 20, 50–60 (2017).
pubmed: 28501528 pmcid: 5478211 doi: 10.1016/j.ebiom.2017.05.001
Bidard, F. C., Pierga, J. Y., Soria, J. C. & Thiery, J. P. Translating metastasis-related biomarkers to the clinic-progress and pitfalls. Nat. Rev. Clin. Oncol. 10, 169–179 (2013).
pubmed: 23381003 doi: 10.1038/nrclinonc.2013.4
Lee, J. et al. Novel human aminopeptidase N inhibitors: discovery and optimization of subsite binding interactions. J. Med. Chem. 62, 7185–7209 (2019).
pubmed: 31251594 doi: 10.1021/acs.jmedchem.9b00757
Tokuhara, T. et al. Clinical significance of aminopeptidase N in non-small cell lung cancer. Clin. Cancer Res. 12, 3971–3978 (2006).
pubmed: 16818694 doi: 10.1158/1078-0432.CCR-06-0338
Hashida, H. et al. Aminopeptidase N is involved in cell motility and angiogenesis: its clinical significance in human colon cancer. Gastroenterology 122, 376–386 (2002).
pubmed: 11832452 doi: 10.1053/gast.2002.31095
Kehlen, A., Lendeckel, U., Dralle, H., Langner, J. & Hoang-Vu, C. Biological significance of aminopeptidase N/CD13 in thyroid carcinomas. Cancer Res. 63, 8500–8506 (2003).
pubmed: 14679016
Castelli, G., Pelosi, E. & Testa, U. Liver cancer: molecular characterization, clonal evolution and cancer stem cells. Cancers (Basel) 9, 127 (2017).
doi: 10.3390/cancers9090127
Takeishi, K. et al. Diacylglycerol kinase alpha enhances hepatocellular carcinoma progression by activation of Ras-Raf-MEK-ERK pathway. J. Hepatol. 57, 77–83 (2012).
pubmed: 22425622 doi: 10.1016/j.jhep.2012.02.026
Delire, B. & Starkel, P. The Ras/MAPK pathway and hepatocarcinoma: pathogenesis and therapeutic implications. Eur. J. Clin. Invest. 45, 609–623 (2015).
pubmed: 25832714 doi: 10.1111/eci.12441
Saxena, N. K. et al. Concomitant activation of the JAK/STAT, PI3K/AKT, and ERK signaling is involved in leptin-mediated promotion of invasion and migration of hepatocellular carcinoma cells. Cancer Res. 67, 2497–2507 (2007).
pubmed: 17363567 pmcid: 2925446 doi: 10.1158/0008-5472.CAN-06-3075
Whittaker, S., Marais, R. & Zhu, A. X. The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene 29, 4989–5005 (2010).
pubmed: 20639898 doi: 10.1038/onc.2010.236
Chambard, J. C., Lefloch, R., Pouyssegur, J. & Lenormand, P. ERK implication in cell cycle regulation. Biochim. Biophys. Acta 1773, 1299–1310 (2007).
pubmed: 17188374 doi: 10.1016/j.bbamcr.2006.11.010
Aoki, K. et al. Propagating wave of ERK activation orients collective cell migration. Dev. Cell 43, 305–317 e305 (2017).
pubmed: 29112851 doi: 10.1016/j.devcel.2017.10.016
Roux, P. P. & Blenis, J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev. 68, 320–344 (2004).
pubmed: 15187187 pmcid: 419926 doi: 10.1128/MMBR.68.2.320-344.2004
Dhillon, A. S., Hagan, S., Rath, O. & Kolch, W. MAP kinase signalling pathways in cancer. Oncogene 26, 3279–3290 (2007).
pubmed: 17496922 doi: 10.1038/sj.onc.1210421
Patel, A. L. & Shvartsman, S. Y. Outstanding questions in developmental ERK signaling. Development 145, dev143818 (2018).
pubmed: 30049820 pmcid: 6078328 doi: 10.1242/dev.143818
Garcia-Cazorla, A. et al. Two novel mutations in the BCKDK (branched-chain keto-acid dehydrogenase kinase) gene are responsible for a neurobehavioral deficit in two pediatric unrelated patients. Hum. Mutat. 35, 470–477 (2014).
pubmed: 24449431 doi: 10.1002/humu.22513
Burrage, L. C., Nagamani, S. C., Campeau, P. M. & Lee, B. H. Branched-chain amino acid metabolism: from rare Mendelian diseases to more common disorders. Hum. Mol. Genet. 23, R1–R8 (2014).
pubmed: 24651065 pmcid: 4170715 doi: 10.1093/hmg/ddu123
Zhang, X., Fang, H., Zhang, J., Yuan, Y. & Xu, W. Recent advance in aminopeptidase N (APN/CD13) inhibitor research. Curr. Med. Chem. 18, 5011–5021 (2011).
pubmed: 22050749 doi: 10.2174/092986711797535155

Auteurs

Mengying Zhai (M)

Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China.

Zixia Yang (Z)

Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China.

Chenrui Zhang (C)

Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China.

Jinping Li (J)

Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China.
Tianjin Kangzhe Pharmaceutical Technology Development Company, Ltd., 300042, Tianjin, China.

Jing Jia (J)

Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China.
Tianjin Kangzhe Pharmaceutical Technology Development Company, Ltd., 300042, Tianjin, China.

Lingyi Zhou (L)

Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China.

Rong Lu (R)

Tianjin Kangzhe Pharmaceutical Technology Development Company, Ltd., 300042, Tianjin, China. lu_rong@vip.sina.com.

Zhi Yao (Z)

Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China. yaozhi@tmu.edu.cn.
2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, 300070, Tianjin, China. yaozhi@tmu.edu.cn.

Zheng Fu (Z)

Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070, Tianjin, China. fuzhengcn@vip.sina.com.
Tianjin Kangzhe Pharmaceutical Technology Development Company, Ltd., 300042, Tianjin, China. fuzhengcn@vip.sina.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH