Electrical switching between exciton dissociation to exciton funneling in MoSe
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
26 May 2020
26 May 2020
Historique:
received:
06
01
2020
accepted:
24
04
2020
entrez:
28
5
2020
pubmed:
28
5
2020
medline:
28
5
2020
Statut:
epublish
Résumé
The heterostructure of monolayer transition metal dichalcogenides (TMDCs) provides a unique platform to manipulate exciton dynamics. The ultrafast carrier transfer across the van der Waals interface of the TMDC hetero-bilayer can efficiently separate electrons and holes in the intralayer excitons with a type II alignment, but it will funnel excitons into one layer with a type I alignment. In this work, we demonstrate the reversible switch from exciton dissociation to exciton funneling in a MoSe
Identifiants
pubmed: 32457328
doi: 10.1038/s41467-020-16419-x
pii: 10.1038/s41467-020-16419-x
pmc: PMC7250925
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2640Subventions
Organisme : United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research (AF Office of Scientific Research)
ID : FA9550-18-1-0312
Organisme : ACS | American Chemical Society Petroleum Research Fund (ACS Petroleum Research Fund)
ID : 59957-DNI10
Références
Paik, E. Y. et al. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature 576, 80–84 (2019).
doi: 10.1038/s41586-019-1779-x
Zhang, K. et al. Interlayer transition and infrared photodetection in atomically thin type-II MoTe
doi: 10.1021/acsnano.6b00980
Zhang, W. et al. Ultrahigh-gain photodetectors based on atomically thin graphene-MoS
doi: 10.1038/srep03826
Zhou, X. et al. Vertical heterostructures based on SnSe
doi: 10.1088/2053-1583/aa6422
Huang, M. et al. Broadband black-phosphorus photodetectors with high responsivity. Adv. Mater. 28, 3481–3485 (2016).
doi: 10.1002/adma.201506352
Splendiani, A. et al. Emerging photoluminescence in monolayer MoS
doi: 10.1021/nl903868w
Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS
doi: 10.1103/PhysRevLett.105.136805
Mak, K. F. et al. Tightly bound trions in monolayer MoS
doi: 10.1038/nmat3505
Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 4, 1474 (2013).
doi: 10.1038/ncomms2498
Zhu, B., Chen, X. & Cui, X. Exciton binding energy of monolayer WS
doi: 10.1038/srep09218
Gerd, P. et al. Identification of excitons, trions and biexcitons in single-layer WS
doi: 10.1002/pssr.201510224
Singh, A. et al. Coherent electronic coupling in atomically thin MoS
doi: 10.1103/PhysRevLett.112.216804
Li, Z. et al. Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe
doi: 10.1038/s41467-018-05863-5
Rivera, P. et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 13, 1004–1015 (2018).
doi: 10.1038/s41565-018-0193-0
Jin, C. et al. Ultrafast dynamics in van der Waals heterostructures. Nat. Nanotechnol. 13, 994–1003 (2018).
doi: 10.1038/s41565-018-0298-5
Yu, Y. et al. Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and nonepitaxial MoS
doi: 10.1021/nl5038177
Rigosi, A. F., Hill, H. M., Li, Y., Chernikov, A. & Heinz, T. F. Probing interlayer interactions in transition metal dichalcogenide heterostructures by optical spectroscopy: MoS
doi: 10.1021/acs.nanolett.5b01055
Lee, C.-H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014).
doi: 10.1038/nnano.2014.150
Kim, J. et al. Observation of ultralong valley lifetime in WSe
doi: 10.1126/sciadv.1700518
Zhu, X. et al. Charge transfer excitons at van der Waals interfaces. J. Am. Chem. Soc. 137, 8313–8320 (2015).
doi: 10.1021/jacs.5b03141
Hong, X. et al. Ultrafast charge transfer in atomically thin MoS
doi: 10.1038/nnano.2014.167
Bellus, M. Z. et al. Type-I van der Waals heterostructure formed by MoS
doi: 10.1039/C6NH00144K
Baranowski, M. et al. Probing the interlayer exciton physics in a MoS
doi: 10.1021/acs.nanolett.7b03184
Nagler, P. et al. Interlayer exciton dynamics in a dichalcogenide monolayer heterostructure. 2D Mater. 4, 25112 (2017).
doi: 10.1088/2053-1583/aa7352
Ross, J. S. et al. Interlayer exciton optoelectronics in a 2D heterostructure p–n junction. Nano Lett. 17, 638–643 (2017).
doi: 10.1021/acs.nanolett.6b03398
Miller, B. et al. Long-lived direct and indirect interlayer excitons in van der Waals heterostructures. Nano Lett. 17, 5229–5237 (2017).
doi: 10.1021/acs.nanolett.7b01304
Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe
doi: 10.1038/ncomms7242
Kozawa, D. et al. Evidence for fast interlayer energy transfer in MoSe
doi: 10.1021/acs.nanolett.6b00801
Li, Z. et al. Emerging photoluminescence from the dark-exciton phonon replica in monolayer WSe
doi: 10.1038/s41467-019-10477-6
Wu, C.-L. et al. Gate induced metal-insulator transition in MoS
doi: 10.1021/acs.nanolett.7b05377
Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).
doi: 10.1038/s41586-019-0986-9
Ruiz-Tijerina, D. A. & Fal’ko, V. I. Interlayer hybridization and moiré superlattice minibands for electrons and excitons in heterobilayers of transition-metal dichalcogenides. Phys. Rev. B 99, 125424 (2019).
doi: 10.1103/PhysRevB.99.125424
Luryi, S. Quantum capacitance devices. Appl. Phys. Lett. 52, 501–503 (1988).
doi: 10.1063/1.99649