Electrical switching between exciton dissociation to exciton funneling in MoSe


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
26 May 2020
Historique:
received: 06 01 2020
accepted: 24 04 2020
entrez: 28 5 2020
pubmed: 28 5 2020
medline: 28 5 2020
Statut: epublish

Résumé

The heterostructure of monolayer transition metal dichalcogenides (TMDCs) provides a unique platform to manipulate exciton dynamics. The ultrafast carrier transfer across the van der Waals interface of the TMDC hetero-bilayer can efficiently separate electrons and holes in the intralayer excitons with a type II alignment, but it will funnel excitons into one layer with a type I alignment. In this work, we demonstrate the reversible switch from exciton dissociation to exciton funneling in a MoSe

Identifiants

pubmed: 32457328
doi: 10.1038/s41467-020-16419-x
pii: 10.1038/s41467-020-16419-x
pmc: PMC7250925
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2640

Subventions

Organisme : United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research (AF Office of Scientific Research)
ID : FA9550-18-1-0312
Organisme : ACS | American Chemical Society Petroleum Research Fund (ACS Petroleum Research Fund)
ID : 59957-DNI10

Références

Paik, E. Y. et al. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature 576, 80–84 (2019).
doi: 10.1038/s41586-019-1779-x
Zhang, K. et al. Interlayer transition and infrared photodetection in atomically thin type-II MoTe
doi: 10.1021/acsnano.6b00980
Zhang, W. et al. Ultrahigh-gain photodetectors based on atomically thin graphene-MoS
doi: 10.1038/srep03826
Zhou, X. et al. Vertical heterostructures based on SnSe
doi: 10.1088/2053-1583/aa6422
Huang, M. et al. Broadband black-phosphorus photodetectors with high responsivity. Adv. Mater. 28, 3481–3485 (2016).
doi: 10.1002/adma.201506352
Splendiani, A. et al. Emerging photoluminescence in monolayer MoS
doi: 10.1021/nl903868w
Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS
doi: 10.1103/PhysRevLett.105.136805
Mak, K. F. et al. Tightly bound trions in monolayer MoS
doi: 10.1038/nmat3505
Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 4, 1474 (2013).
doi: 10.1038/ncomms2498
Zhu, B., Chen, X. & Cui, X. Exciton binding energy of monolayer WS
doi: 10.1038/srep09218
Gerd, P. et al. Identification of excitons, trions and biexcitons in single-layer WS
doi: 10.1002/pssr.201510224
Singh, A. et al. Coherent electronic coupling in atomically thin MoS
doi: 10.1103/PhysRevLett.112.216804
Li, Z. et al. Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe
doi: 10.1038/s41467-018-05863-5
Rivera, P. et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 13, 1004–1015 (2018).
doi: 10.1038/s41565-018-0193-0
Jin, C. et al. Ultrafast dynamics in van der Waals heterostructures. Nat. Nanotechnol. 13, 994–1003 (2018).
doi: 10.1038/s41565-018-0298-5
Yu, Y. et al. Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and nonepitaxial MoS
doi: 10.1021/nl5038177
Rigosi, A. F., Hill, H. M., Li, Y., Chernikov, A. & Heinz, T. F. Probing interlayer interactions in transition metal dichalcogenide heterostructures by optical spectroscopy: MoS
doi: 10.1021/acs.nanolett.5b01055
Lee, C.-H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014).
doi: 10.1038/nnano.2014.150
Kim, J. et al. Observation of ultralong valley lifetime in WSe
doi: 10.1126/sciadv.1700518
Zhu, X. et al. Charge transfer excitons at van der Waals interfaces. J. Am. Chem. Soc. 137, 8313–8320 (2015).
doi: 10.1021/jacs.5b03141
Hong, X. et al. Ultrafast charge transfer in atomically thin MoS
doi: 10.1038/nnano.2014.167
Bellus, M. Z. et al. Type-I van der Waals heterostructure formed by MoS
doi: 10.1039/C6NH00144K
Baranowski, M. et al. Probing the interlayer exciton physics in a MoS
doi: 10.1021/acs.nanolett.7b03184
Nagler, P. et al. Interlayer exciton dynamics in a dichalcogenide monolayer heterostructure. 2D Mater. 4, 25112 (2017).
doi: 10.1088/2053-1583/aa7352
Ross, J. S. et al. Interlayer exciton optoelectronics in a 2D heterostructure p–n junction. Nano Lett. 17, 638–643 (2017).
doi: 10.1021/acs.nanolett.6b03398
Miller, B. et al. Long-lived direct and indirect interlayer excitons in van der Waals heterostructures. Nano Lett. 17, 5229–5237 (2017).
doi: 10.1021/acs.nanolett.7b01304
Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe
doi: 10.1038/ncomms7242
Kozawa, D. et al. Evidence for fast interlayer energy transfer in MoSe
doi: 10.1021/acs.nanolett.6b00801
Li, Z. et al. Emerging photoluminescence from the dark-exciton phonon replica in monolayer WSe
doi: 10.1038/s41467-019-10477-6
Wu, C.-L. et al. Gate induced metal-insulator transition in MoS
doi: 10.1021/acs.nanolett.7b05377
Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).
doi: 10.1038/s41586-019-0986-9
Ruiz-Tijerina, D. A. & Fal’ko, V. I. Interlayer hybridization and moiré superlattice minibands for electrons and excitons in heterobilayers of transition-metal dichalcogenides. Phys. Rev. B 99, 125424 (2019).
doi: 10.1103/PhysRevB.99.125424
Luryi, S. Quantum capacitance devices. Appl. Phys. Lett. 52, 501–503 (1988).
doi: 10.1063/1.99649

Auteurs

Yuze Meng (Y)

Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, 210093, Nanjing, P. R. China.

Tianmeng Wang (T)

Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.

Chenhao Jin (C)

Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA.

Zhipeng Li (Z)

Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.

Shengnan Miao (S)

Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.

Zhen Lian (Z)

Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.

Takashi Taniguchi (T)

National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan.

Kenji Watanabe (K)

National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan.

Fengqi Song (F)

National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, 210093, Nanjing, P. R. China. songfengqi@nju.edu.cn.

Su-Fei Shi (SF)

Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA. shis2@rpi.edu.
Department of Electrical Computer & Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA. shis2@rpi.edu.

Classifications MeSH