The role of microglia in the development of neurodegeneration.

Microglia Neurodegeneration Neurodegenerative disease Neuroinflammation

Journal

Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology
ISSN: 1590-3478
Titre abrégé: Neurol Sci
Pays: Italy
ID NLM: 100959175

Informations de publication

Date de publication:
Dec 2020
Historique:
received: 06 03 2020
accepted: 09 05 2020
pubmed: 28 5 2020
medline: 15 5 2021
entrez: 28 5 2020
Statut: ppublish

Résumé

Microglia-mediated central nervous system (CNS) inflammation is one of the key features of various neurodegenerative diseases, including Parkinson's and Alzheimer's diseases. In the last few years, a number of studies have investigated the link between neurodegenerative diseases and CNS glial cells, in particular microglia. Microglial cells are the main resident immune cells and comprise approximately 10-15% of all CNS cells. Microglia at rest regulates CNS homeostasis via phagocytic activity, by removing pathogens and cell detritus. "Resting" microglia cells transform into an activated form and produce inflammatory mediators, thus protecting neurons and providing defense against invading pathogens. Excessive inflammation leads to neuronal damage and neurodegenerative diseases. Various microglial reactions at different stages of the disease can open up new directions for treatment interventions and modification of the inflammatory activity. This review focuses on the potential role of microglia and the dynamic M1/M2 phenotype changes that are critically linked to certain neurodegenerative diseases.

Identifiants

pubmed: 32458252
doi: 10.1007/s10072-020-04468-5
pii: 10.1007/s10072-020-04468-5
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

3609-3615

Références

Kettenmann H, Hanisch U, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91(2):461–553. https://doi.org/10.1152/physrev.00011.2010
doi: 10.1152/physrev.00011.2010 pubmed: 21527731
Sorrenti V, Contarini G, Sut S, Dall’Acqua S, Confortin F, Pagetta A, Giusti P, Zusso M (2018) Curcumin prevents acute neuroinflammation and long-term memory impairment induced by systemic lipopolysaccharide in mice. Front Pharmacol 9:183. https://doi.org/10.3389/fphar.2018.00183
doi: 10.3389/fphar.2018.00183 pubmed: 29556196 pmcid: 5845393
Glass C, Saijo K, Winner B, Marchetto M, Gage F (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(6):918–934. https://doi.org/10.1016/j.cell.2010.02.016
doi: 10.1016/j.cell.2010.02.016 pubmed: 20303880 pmcid: 2873093
Xu L, He D, Bai Y (2016) Microglia-mediated inflammation and neurodegenerative disease. Mol Neurobiol 53(10):6709–6715. https://doi.org/10.1007/s12035-015-9593-4
doi: 10.1007/s12035-015-9593-4 pubmed: 26659872
Anderson SA, Vetter ML (2019) Developmental roles of microglia: a window into mechanisms of disease. Dev Dyn 248(1):98–117. https://doi.org/10.1002/dvdy.1
doi: 10.1002/dvdy.1 pubmed: 30444278
Orihuela R, McPherson CA, Harry GJ (2016) Microglial M1/M2 polarization and metabolic states. B J Pharmacol 173(4):649–666. https://doi.org/10.1111/bph.13139
doi: 10.1111/bph.13139
Colton C, Wilcock D (2010) Assessing activation states in microglia. CNS Neurol Disord Drug Targets 9(2):174–191. https://doi.org/10.2174/187152710791012053
doi: 10.2174/187152710791012053 pubmed: 20205642
Vay SU, Flitsch LG, Rabenstein M, Rogall R, Blaschke S, Kleinhaus J, Reinert N, Bach A, Fink GR, Schroeter M, Rueger MA (2018) The plasticity of primary microglia and their multifaceted effects on endogenous neural stem cells in vitro and in vivo. J Neuroinflammation 15:226. https://doi.org/10.1186/s12974-018-1261-y
doi: 10.1186/s12974-018-1261-y pubmed: 30103769 pmcid: 6090672
Cherry JD, Olschowka JA, O’Banion MK (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation 11:98. https://doi.org/10.1186/1742-2094-11-98
doi: 10.1186/1742-2094-11-98 pubmed: 24889886 pmcid: 4060849
Sanjabi S, Oh SA, Li MO (2017) Regulation of the immune response by TGF-β: from conception to autoimmunity and infection. Cold Spring Harb Perspect Biol 9(6):a022236. https://doi.org/10.1101/cshperspect.a022236
doi: 10.1101/cshperspect.a022236 pubmed: 28108486 pmcid: 5453394
Majerova P, Zilkova M, Kazmerova Z, Kovac A, Paholikova K, Kovacech B, Zilka N, Novak M (2014) Microglia display modest phagocytic capacity for extracellular tau oligomers. J Neuroinflammation 11(1):161. https://doi.org/10.1186/s12974-014-0161-z
doi: 10.1186/s12974-014-0161-z pubmed: 25217135 pmcid: 4172893
Scarpina F, Paschino C, Priano L, Mauro A (2020) Performance at the clock drawing test of individuals affected by Parkinson’s disease and healthy subjects: a retrospective study. Neurol Sci 41(4):843–849. https://doi.org/10.1007/s10072-019-04167-w
doi: 10.1007/s10072-019-04167-w pubmed: 31807997
Kataoka H, Sugie K (2020) Serum adiponectin levels between patients with Parkinson’s disease and those with PSP. Neurol Sci 41(5):1–7. https://doi.org/10.1007/s10072-019-04216-4
doi: 10.1007/s10072-019-04216-4
Lashuel H, Overk C, Oueslati A, Masliah E (2012) The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci 14(1):38–48. https://doi.org/10.1038/nrn3406
doi: 10.1038/nrn3406
Lee E, Woo M, Moon P, Baek M, Choi I, Kim W, Junn E, Kim HS (2010) α-Synuclein activates microglia by inducing the expressions of matrix metalloproteinases and the subsequent activation of protease-activated receptor-1. J Immunol 185(1):615–623. https://doi.org/10.4049/jimmunol.0903480
doi: 10.4049/jimmunol.0903480 pubmed: 20511551
Rojanathammanee L, Murphy E, Combs C (2011) Expression of mutant alpha-synuclein modulates microglial phenotype in vitro. J Neuroinflammation 8(1):44. https://doi.org/10.1186/1742-2094-8-44
doi: 10.1186/1742-2094-8-44 pubmed: 21554732 pmcid: 3104357
Chakrabarty P, Ceballos-Diaz C, Beccard A, Janus C, Dickson D, Golde T, Das P (2010) IFN-γ promotes complement expression and attenuates amyloid plaque deposition in amyloid β precursor protein transgenic mice. J Immunol 184(9):5333–5343. https://doi.org/10.4049/jimmunol.0903382
doi: 10.4049/jimmunol.0903382 pubmed: 20368278 pmcid: 3798002
Porras G, Li Q, Bezard E (2011) Modeling Parkinson’s disease in primates: the MPTP model. Cold Spring Harb Perspect Med 2(3):a009308. https://doi.org/10.1101/cshperspect.a009308
doi: 10.1101/cshperspect.a009308
Park J, Lim CS, Seo H, Park CA, Zhuo M, Kaang BK, Lee K (2015) Pain perception in acute model mice of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Mol Pain 11:28. https://doi.org/10.1186/2Fs12990-015-0026-1
doi: 10.1186/2Fs12990-015-0026-1 pubmed: 25981600 pmcid: 4448854
Hou L, Zhou X, Zhang C, Wang K, Liu X, Che Y, Sun F, Huihua L, Wang Q, Zhang D, Honge JS (2017) NADPH oxidase-derived H2O2 mediates the regulatory effects of microglia on astrogliosis in experimental models of Parkinson’s disease. Redox Biol 12:162–170. https://doi.org/10.1016/j.redox.2017.02.016
doi: 10.1016/j.redox.2017.02.016 pubmed: 28237879 pmcid: 5328707
Winblad B, Amouyel P, Andrieu S, Ballard C, Brayne C, Brodaty H, Cedazo-Minguez A, Dubois B, Edvardsson D, Feldman H, Fratiglioni L, Frisoni GB, Gauthier S, Georges J, Graff C, Iqbal K, Jessen F, Johansson G, Jönsson L, Kivipelto M, Knapp M, Mangialasche F, Melis R, Nordberg A, Rikkert MO, Qiu C, Sakmar TP, Scheltens P, Schneider LS, Sperling R, Tjernberg LO, Waldemar G, Wimo A, Zetterberg H (2016) Defeating Alzheimer’s disease and other dementias: a priority for European science and society. Lancet Neurol 15(5):455–532. https://doi.org/10.1016/S1474-4422(16)00062-4
doi: 10.1016/S1474-4422(16)00062-4 pubmed: 26987701
Palmqvist S, Schöll M, Strandberg O, Mattsson N, Stomrud E, Zetterberg H, Blennow K, Landau S, Jagust W, Hansson O (2017) Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity. Nat Commun 8(1):1214. https://doi.org/10.1038/s41467-017-01150-x
doi: 10.1038/s41467-017-01150-x pubmed: 29089479 pmcid: 5663717
Prokop S, Miller K, Heppner F (2013) Microglia actions in Alzheimer’s disease. Acta Neuropathol 126(4):461–477. https://doi.org/10.1007/s00401-013-1182-x
doi: 10.1007/s00401-013-1182-x pubmed: 24224195
Fiebich BL, Batista CRA, Saliba SW, Yousif NM, de Oliveira ACP (2018) Role of microglia TLRs in neurodegeneration. Front Cell Neurosci 12:329. https://doi.org/10.3389/fncel.2018.00329
doi: 10.3389/fncel.2018.00329 pubmed: 30333729 pmcid: 6176466
Parajuli B, Sonobe Y, Horiuchi H, Takeuchi H, Mizuno T, Suzumura A (2013) Oligomeric amyloid β induces IL-1β processing via production of ROS: implication in Alzheimer’s disease. Cell Death Disease 4(12):e975. https://doi.org/10.1038/cddis.2013.503
doi: 10.1038/cddis.2013.503 pubmed: 24357806 pmcid: 3877570
Kim C, Ho D, Suk J, You S, Michael S, Kang J, Joong Lee S, Masliah E, Hwang D, Lee HJ, Lee SJ (2013) Neuron-released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat Commun 4(1):1562. https://doi.org/10.1038/ncomms2534
doi: 10.1038/ncomms2534 pubmed: 23463005 pmcid: 4089961
Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, El Fatimy R, Beckers L, O’Loughlin E, Xu Y, Fanek Z, Greco DJ, Smithm ST, Tweet G, Humulock Z, Zrzavy T, Conde-Sanroman P, Gacias M, Weng Z, Butovsky O (2017) The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47(3):566–581. https://doi.org/10.1016/j.immuni.2017.08.008
doi: 10.1016/j.immuni.2017.08.008 pubmed: 5719893 pmcid: 5719893
Yi ZQ, Zhao P, Zhang H, Shi Y, Shi H, Zhong J, Pan P (2020) Theory of mind in Alzheimer’s disease and amnestic mild cognitive impairment: a meta-analysis. Neur Sci 41(5):1–13. https://doi.org/10.1007/s10072-019-04215-5
doi: 10.1007/s10072-019-04215-5
Martinez B, Peplow PV (2019) Amelioration of Alzheimer’s disease pathology and cognitive deficits by immunomodulatory agents in animal models of Alzheimer’s disease. Neural Regen Res 14(7):1158–1176. https://doi.org/10.4103/1673-5374.251192
doi: 10.4103/1673-5374.251192 pubmed: 30804241 pmcid: 6425849
Mawuenyega K, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris J, Yarasheski KE, Bateman RJ (2010) Decreased clearance of CNS β-amyloid in Alzheimer’s disease. Science 330(6012):1774. https://doi.org/10.1126/science.1197623
doi: 10.1126/science.1197623 pubmed: 21148344 pmcid: 3073454
Kraft A, Hu X, Yoon H, Yan P, Xiao Q, Wang Y, Gil SC, Brown J, Wilhelmsson U, Restivo JL, Cirrito JR, Holtzman DM, Kim J, Pekny M, Lee JM (2013) Attenuating astrocyte activation accelerates plaque pathogenesis in APP/PS1 mice. FASEB J 27(1):187–198. https://doi.org/10.1096/fj.12-208660
doi: 10.1096/fj.12-208660 pubmed: 23038755 pmcid: 3528309
Kawahara K, Suenobu M, Yoshida A, Koga K, Hyodo A, Ohtsuka H, Kuniyasu A, Tamamaki N, Sugimoto Y, Nakayama H (2012) Intracerebral microinjection of interleukin-4/interleukin-13 reduces β-amyloid accumulation in the ipsilateral side and improves cognitive deficits in young amyloid precursor protein 23 mice. Neuroscience 207:243–260. https://doi.org/10.1016/j.neuroscience.2012.01.049
doi: 10.1016/j.neuroscience.2012.01.049 pubmed: 22342341
Kiyota T, Ingraham K, Swan R, Jacobsen M, Andrews S, Ikezu T (2011) AAV serotype 2/1-mediated gene delivery of anti-inflammatory interleukin-10 enhances neurogenesis and cognitive function in APP+PS1 mice. Gene Ther 19(7):724–733. https://doi.org/10.1038/gt.2011.126
doi: 10.1038/gt.2011.126 pubmed: 21918553 pmcid: 3241853
Luo X, Chen S (2012) The changing phenotype of microglia from homeostasis to disease. Transl Neurodegener 1(1):9. https://doi.org/10.1186/2047-9158-1-9
doi: 10.1186/2047-9158-1-9 pubmed: 23210447 pmcid: 3514090
Tang Y, Li T, Li J, Yang J, Liu H, Zhang X, Le W (2013) Jmjd3 is essential for the epigenetic modulation of microglia phenotypes in the immune pathogenesis of Parkinson’s disease. Cell Death Differ 21(3):369–380. https://doi.org/10.1038/cdd.2013.159
doi: 10.1038/cdd.2013.159 pubmed: 24212761 pmcid: 3921590
Lee D, Ruiz C, Lebson L, Selenica M, Rizer J, Hunt J, Rojiani R, Reid P, Kammath S, Nash K (2013) Aging enhances classical activation but mitigates alternative activation in the central nervous system. Neurobiol Aging 34(6):1610–1620. https://doi.org/10.1016/j.neurobiolaging.2012.12.014
doi: 10.1016/j.neurobiolaging.2012.12.014 pubmed: 23481567 pmcid: 3652232
Saakyan SV, Myakoshina EB, Krichevskaya GI, Slepova OS, Panteleeva OG, Andryushin AE, Khoroshilova LP, Zakharova GP (2016) Testing patients with uveal melanoma for herpesvirus infections. Voprosy Virusologii 61(6):284–287. https://doi.org/10.18821/0507-4088-2016-61-6-284-287
doi: 10.18821/0507-4088-2016-61-6-284-287
Lauro C, Catalano M, Trettel F, Limatola C (2015) Fractalkine in the nervous system: neuroprotective or neurotoxic molecule? Ann NY Acad Sci 1351(1):141–148. https://doi.org/10.1111/nyas.12805
doi: 10.1111/nyas.12805 pubmed: 26084002
Poniatowski Ł, Wojdasiewicz P, Krawczyk M, Szukiewicz D, Gasik R, Kubaszewski Ł, Kurkowska-Jastrzębska I (2016) Analysis of the role of CX3CL1 (Fractalkine) and its receptor CX3CR1 in traumatic brain and spinal cord injury: insight into recent advances in actions of neurochemokine agents. Mol Neurobiol 54(3):2167–2188. https://doi.org/10.1007/s12035-016-9787-4
doi: 10.1007/s12035-016-9787-4 pubmed: 26927660 pmcid: 5355526
Mecca C, Giambanco I, Donato R, Arcuri C (2018) Microglia and aging: the role of the TREM2–DAP12 and CX3CL1-CX3CR1 axes. Int J Mol Sci 19(1):318. https://doi.org/10.3390/ijms19010318
doi: 10.3390/ijms19010318 pmcid: 5796261
Sanchez-Guajardo V, Barnum C, Tansey M, Romero-Ramos M (2013) Neuroimmunological processes in Parkinson’s disease and their relation to α-synuclein: microglia as the referee between neuronal processes and peripheral immunity. ASN Neuro 5(2):AN20120066. https://doi.org/10.1042/2FAN20120066
doi: 10.1042/2FAN20120066

Auteurs

Aigul R Saitgareeva (AR)

Bashkir State Medical University, Ufa, Russian Federation.

Kirill V Bulygin (KV)

I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation. bulyginki@rambler.ru.
M.V. Lomonosov Moscow State University, Moscow, Russian Federation. bulyginki@rambler.ru.

Ilgiz F Gareev (IF)

Bashkir State Medical University, Ufa, Russian Federation.

Ozal A Beylerli (OA)

Hospital of Emergency Medical Care of Ufa, Ufa, Russian Federation.

Leila R Akhmadeeva (LR)

Bashkir State Medical University, Ufa, Russian Federation.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH