Vulnerabilities in coronavirus glycan shields despite extensive glycosylation.
Coronavirus Infections
/ immunology
Cryoelectron Microscopy
Epitopes
/ chemistry
Glycoproteins
/ chemistry
Glycosylation
HEK293 Cells
HIV-1
/ immunology
Humans
Immune Evasion
/ physiology
Lassa virus
/ immunology
Middle East Respiratory Syndrome Coronavirus
/ immunology
Orthomyxoviridae
/ immunology
Polysaccharides
/ chemistry
Spike Glycoprotein, Coronavirus
/ chemistry
Viral Fusion Proteins
/ chemistry
Viral Proteins
/ chemistry
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
27 05 2020
27 05 2020
Historique:
received:
11
02
2020
accepted:
07
05
2020
entrez:
29
5
2020
pubmed:
29
5
2020
medline:
18
8
2020
Statut:
epublish
Résumé
Severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses (CoVs) are zoonotic pathogens with high fatality rates and pandemic potential. Vaccine development focuses on the principal target of the neutralizing humoral immune response, the spike (S) glycoprotein. Coronavirus S proteins are extensively glycosylated, encoding around 66-87 N-linked glycosylation sites per trimeric spike. Here, we reveal a specific area of high glycan density on MERS S that results in the formation of oligomannose-type glycan clusters, which were absent on SARS and HKU1 CoVs. We provide a comparison of the global glycan density of coronavirus spikes with other viral proteins including HIV-1 envelope, Lassa virus glycoprotein complex, and influenza hemagglutinin, where glycosylation plays a known role in shielding immunogenic epitopes. Overall, our data reveal how organisation of glycosylation across class I viral fusion proteins influence not only individual glycan compositions but also the immunological pressure across the protein surface.
Identifiants
pubmed: 32461612
doi: 10.1038/s41467-020-16567-0
pii: 10.1038/s41467-020-16567-0
pmc: PMC7253482
doi:
Substances chimiques
Epitopes
0
Glycoproteins
0
Polysaccharides
0
Spike Glycoprotein, Coronavirus
0
Viral Fusion Proteins
0
Viral Proteins
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2688Subventions
Organisme : Wellcome Trust
ID : 203141/Z/16/Z
Pays : United Kingdom
Organisme : NIAID NIH HHS
ID : R56 AI127371
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI127521
Pays : United States
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/S007555/1
Pays : United Kingdom
Organisme : NIAID NIH HHS
ID : UM1 AI144462
Pays : United States
Références
Cui, J., Li, F. & Shi, Z. L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 181–192 (2019).
pubmed: 30531947
doi: 10.1038/s41579-018-0118-9
Peiris, J. S. M., Guan, Y. & Yuen, K. Y. Severe acute respiratory syndrome. Nat. Med. 10, S88–S97 (2004).
pubmed: 15577937
pmcid: 7096017
doi: 10.1038/nm1143
Zaki, A. M., van Boheemen, S., Bestebroer, T. M., Osterhaus, A. D. M. E. & Fouchier, R. A. M. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 367, 1814–1820 (2012).
pubmed: 23075143
doi: 10.1056/NEJMoa1211721
Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 6736, 1–10 (2020).
Azhar, E. I. et al. Evidence for camel-to-human transmission of MERS coronavirus. N. Engl. J. Med. 370, 2499–2505 (2014).
pubmed: 24896817
doi: 10.1056/NEJMoa1401505
Li, W. et al. Bats are natural reservoirs of SARS-like coronaviruses. Science 310, 676–679 (2005).
pubmed: 16195424
doi: 10.1126/science.1118391
Zhou, Y., Jiang, S. & Du, L. Prospects for a MERS-CoV spike vaccine. Expert Rev. Vaccines 17, 677–686 (2018).
pubmed: 30058403
pmcid: 6355461
doi: 10.1080/14760584.2018.1506702
Xu, J. et al. Antibodies and vaccines against Middle East respiratory syndrome coronavirus. Emerg. Microb. Infect. 8, 841–856 (2019).
doi: 10.1080/22221751.2019.1624482
Kirchdoerfer, R. N. et al. Pre-fusion structure of a human coronavirus spike protein. Nature 531, 118–121 (2016).
pubmed: 26935699
pmcid: 26935699
doi: 10.1038/nature17200
Tortorici, M. A. & Veesler, D. Structural insights into coronavirus entry. in. Adv. Virus Res. 105, 93–116 (2019).
pubmed: 31522710
pmcid: 7112261
doi: 10.1016/bs.aivir.2019.08.002
Yuan, Y. et al. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat. Commun. 8, 15092 (2017).
pubmed: 28393837
pmcid: 5394239
doi: 10.1038/ncomms15092
Raj, V. S. et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495, 251–254 (2013).
pubmed: 23486063
pmcid: 7095326
doi: 10.1038/nature12005
Li, W. et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450–454 (2003).
pubmed: 14647384
pmcid: 7095016
doi: 10.1038/nature02145
Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 1–4, https://doi.org/10.1038/s41586-020-2012-7 (2020).
pubmed: 7095418
pmcid: 7095418
doi: 10.1038/s41586-020-2012-7
Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science https://doi.org/10.1126/science.abb2507 (2020).
doi: 10.1126/science.abb2507
pubmed: 32366695
pmcid: 7199903
Walls, A. C. et al. Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy. Nat. Struct. Mol. Biol. 23, 899–905 (2016).
pubmed: 27617430
pmcid: 5515730
doi: 10.1038/nsmb.3293
Walls, A. C. et al. Unexpected receptor functional mimicry elucidates activation of coronavirus fusion. Cell 176, 1026-1-39.e5 (2019).
doi: 10.1016/j.cell.2018.12.028
Yang, T. J. et al. Cryo-EM analysis of a feline coronavirus spike protein reveals a unique structure and camouflaging glycans. Proc. Natl Acad. Sci. USA 117, 1438–1446 (2020).
pubmed: 31900356
doi: 10.1073/pnas.1908898117
Stewart-Jones, G. B. E. et al. Trimeric HIV-1-Env structures define glycan shields from Clades A, B, and G. Cell 165, 813–826 (2016).
pubmed: 27114034
pmcid: 5543418
doi: 10.1016/j.cell.2016.04.010
Wei, X. et al. Antibody neutralization and escape by HIV-1. Nature 422, 307–312 (2003).
pubmed: 12646921
doi: 10.1038/nature01470
Crispin, M., Ward, A. B. & Wilson, I. A. Structure and immune recognition of the HIV glycan shield. Annu. Rev. Biophys. 47, 499–523 (2018).
pubmed: 29595997
pmcid: 6163090
doi: 10.1146/annurev-biophys-060414-034156
Wu, N. C. & Wilson, I. A. A perspective on the structural and functional constraints for immune evasion: insights from influenza virus. J. Mol. Biol. 429, 2694–2709 (2017).
pubmed: 28648617
pmcid: 5573227
doi: 10.1016/j.jmb.2017.06.015
Tate, M. D. et al. Playing hide and seek: how glycosylation of the influenza virus hemagglutinin can modulate the immune response to infection. Viruses 6, 1294–1316 (2014).
pubmed: 24638204
pmcid: 3970151
doi: 10.3390/v6031294
Watanabe, Y. et al. Structure of the Lassa virus glycan shield provides a model for immunological resistance. Proc. Natl Acad. Sci. USA 115, 7320–7325 (2018).
pubmed: 29941589
doi: 10.1073/pnas.1803990115
Sommerstein, R. et al. Arenavirus glycan shield promotes neutralizing antibody evasion and protracted infection. PLoS Pathog. 11, e1005276 (2015).
pubmed: 26587982
pmcid: 4654586
doi: 10.1371/journal.ppat.1005276
Watanabe, Y., Bowden, T. A., Wilson, I. A. & Crispin, M. Exploitation of glycosylation in enveloped virus pathobiology. Biochim. Biophys. Acta 1863, 1480–1497 (2019).
doi: 10.1016/j.bbagen.2019.05.012
Behrens, A.-J. & Crispin, M. Structural principles controlling HIV envelope glycosylation. Curr. Opin. Struct. Biol. 44, 125–133 (2017).
pubmed: 28363124
pmcid: 5513759
doi: 10.1016/j.sbi.2017.03.008
Pritchard, L. K. et al. Glycan clustering stabilizes the mannose patch of HIV-1 and preserves vulnerability to broadly neutralizing antibodies. Nat. Commun. 6, 7479 (2015).
pubmed: 26105115
pmcid: 4500839
doi: 10.1038/ncomms8479
Zhang, M. et al. Tracking global patterns of N-linked glycosylation site variation in highly variable viral glycoproteins: HIV, SIV, and HCV envelopes and influenza hemagglutinin. Glycobiology 14, 1229–1246 (2004).
pubmed: 15175256
doi: 10.1093/glycob/cwh106
Yu, W. H. et al. Exploiting glycan topography for computational design of Env glycoprotein antigenicity. PLoS Comput. Biol. 14, e1006093 (2018).
pubmed: 29677181
pmcid: 5931682
doi: 10.1371/journal.pcbi.1006093
Zhou, T. et al. Quantification of the impact of the HIV-1-glycan shield on antibody elicitation. Cell Rep. 19, 719–732 (2017).
pubmed: 28445724
pmcid: 5538809
doi: 10.1016/j.celrep.2017.04.013
Go, E. P. et al. Glycosylation benchmark profile for HIV-1 envelope glycoprotein production based on eleven env trimers. J. Virol. 91, e02428-16 (2017).
pubmed: 28202756
pmcid: 5391476
doi: 10.1128/JVI.02428-16
Go, E. P. et al. Comparative analysis of the glycosylation profiles of membrane-anchored HIV-1 envelope glycoprotein trimers and soluble gp140. J. Virol. 89, 8245–8257 (2015).
pubmed: 26018173
pmcid: 4524223
doi: 10.1128/JVI.00628-15
Hargett, A. A. et al. Defining HIV-1 envelope N-glycan microdomains through site-specific heterogeneity profiles. J. Virol. 93, e01177-18 (2018).
pubmed: 30305355
pmcid: 6288332
doi: 10.1128/JVI.01177-18
Crispin, M. D. et al. Monoglucosylated glycans in the secreted human complement component C3: implications for protein biosynthesis and structure. FEBS Lett. 566, 270–274 (2004).
pubmed: 15147907
doi: 10.1016/j.febslet.2004.04.045
Struwe, W. B. et al. Site-specific glycosylation of virion-derived HIV-1 Env Is mimicked by a soluble trimeric immunogen. Cell Rep. 24, 1958–1966.e5 (2018).
pubmed: 30134158
pmcid: 6113929
doi: 10.1016/j.celrep.2018.07.080
Pritchard, L. et al. Structural constraints determine the glycosylation of HIV-1 envelope trimers. Cell Rep. 11, 1604–1613 (2015).
pubmed: 26051934
pmcid: 4555872
doi: 10.1016/j.celrep.2015.05.017
Cao, L. et al. Differential processing of HIV envelope glycans on the virus and soluble recombinant trimer. Nat. Commun. 9, 3693 (2018).
pubmed: 30209313
pmcid: 6135743
doi: 10.1038/s41467-018-06121-4
Wagh, K. et al. Completeness of HIV-1 envelope glycan shield at transmission determines neutralization breadth. Cell Rep. 25, 893–908.e7 (2018).
pubmed: 30355496
pmcid: 6426304
doi: 10.1016/j.celrep.2018.09.087
Seabright, G. E., Doores, K. J., Burton, D. R. & Crispin, M. Protein and glycan mimicry in HIV vaccine design. J. Mol. Biol. https://doi.org/10.1016/j.jmb.2019.04.016 (2019).
doi: 10.1016/j.jmb.2019.04.016
pubmed: 31028779
pmcid: 6556556
Pallesen, J. et al. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc. Natl Acad. Sci. USA 114, E7348–E7357 (2017).
pubmed: 28807998
doi: 10.1073/pnas.1707304114
Ritchie, G. et al. Identification of N-linked carbohydrates from severe acute respiratory syndrome (SARS) spike glycoprotein. Virology 399, 257–269 (2010).
pubmed: 20129637
pmcid: 3412594
doi: 10.1016/j.virol.2009.12.020
Stertz, S. et al. The intracellular sites of early replication and budding of SARS-coronavirus. Virology 361, 304–315 (2007).
pubmed: 17210170
pmcid: 7103305
doi: 10.1016/j.virol.2006.11.027
Ng, M. L., Tan, S. H., See, E. E., Ooi, E. E. & Ling, A. E. Proliferative growth of SARS coronavirus in Vero E6 cells. J. Gen. Virol. 84, 3291–3303 (2003).
pubmed: 14645910
doi: 10.1099/vir.0.19505-0
Behrens, A.-J. et al. Composition and antigenic effects of individual glycan sites of a trimeric HIV-1 envelope glycoprotein. Cell Rep. 14, 2695–2706 (2016).
pubmed: 26972002
pmcid: 4805854
doi: 10.1016/j.celrep.2016.02.058
Cao, L. et al. Global site-specific N-glycosylation analysis of HIV envelope glycoprotein. Nat. Commun. 8, 14954 (2017).
pubmed: 28348411
pmcid: 5379070
doi: 10.1038/ncomms14954
Marzi, A. et al. DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of Severe Acute Respiratory Syndrome coronavirus. J. Virol. 78, 12090–12095 (2004).
pubmed: 15479853
pmcid: 523257
doi: 10.1128/JVI.78.21.12090-12095.2004
Zhou, Y. et al. A single asparagine-linked glycosylation site of the severe acute respiratory syndrome Coronavirus spike glycoprotein facilitates inhibition by mannose-binding lectin through multiple mechanisms. J. Virol. 84, 8753–8764 (2010).
pubmed: 20573835
pmcid: 2919028
doi: 10.1128/JVI.00554-10
Jardine, J. et al. Rational HIV immunogen design to target specific germline B cell receptors. Science 340, 711–716 (2013).
pubmed: 23539181
pmcid: 3689846
doi: 10.1126/science.1234150
Xu, R. et al. Structural basis of preexisting immunity to the 2009 H1N1 pandemic influenza virus. Science 328, 357–360 (2010).
pubmed: 20339031
pmcid: 2897825
doi: 10.1126/science.1186430
Berndsen, Z. T. et al. Visualization of the HIV-1 Env glycan shield across scales. bioRxiv, https://doi.org/10.1101/839217 (2019).
Kirchdoerfer, R. N. et al. Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis. Sci. Rep. 8, 15701 (2018).
pubmed: 30356097
pmcid: 6200764
doi: 10.1038/s41598-018-34171-7
Andrabi, R. et al. The chimpanzee SIV envelope trimer: structure and deployment as an HIV vaccine template. Cell Rep. 27, 2426–2441.e6 (2019).
pubmed: 31116986
pmcid: 6533203
doi: 10.1016/j.celrep.2019.04.082
Lemmin, T., Soto, C., Stuckey, J. & Kwong, P. D. Microsecond dynamics and network analysis of the HIV-1 SOSIP Env trimer reveal collective behavior and conserved microdomains of the glycan shield. Structure 25, 1631–1639.e2 (2017).
pubmed: 28890362
doi: 10.1016/j.str.2017.07.018
Chakraborty, S. et al. A network-based approach for quantifying the resilience and vulnerability of HIV-1 native glycan shield. bioRxiv, https://doi.org/10.1101/846071 (2019).
Burton, D. R. What are the most powerful immunogen design vaccine strategies? Reverse vaccinology 2.0 shows great promise. Cold Spring Harb. Perspect. Biol. 9, a030262 (2017).
pubmed: 28159875
pmcid: 5540812
doi: 10.1101/cshperspect.a030262
Das, S. R. et al. Fitness costs limit influenza A virus hemagglutinin glycosylation as an immune evasion strategy. Proc. Natl Acad. Sci. USA 108, E1417–E1422 (2011).
pubmed: 22106257
doi: 10.1073/pnas.1108754108
Altman, M. O. et al. Human influenza a virus hemagglutinin glycan evolution follows a temporal pattern to a glycan limit. mBio 10, e00204–e00219 (2019).
pubmed: 30940704
pmcid: 6445938
doi: 10.1128/mBio.00204-19
Bajic, G. et al. Influenza antigen engineering focuses immune responses to a subdominant but broadly protective viral epitope. Cell Host Microbe 25, 827–835.e6 (2019).
pubmed: 31104946
doi: 10.1016/j.chom.2019.04.003
pmcid: 6748655
Wu, C. Y. et al. Influenza A surface glycosylation and vaccine design. Proc. Natl Acad. Sci. USA 114, 280–285 (2017).
pubmed: 28028222
doi: 10.1073/pnas.1617174114
Hadfield, J. et al. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics 34, 4121–4123 (2018).
pubmed: 29790939
pmcid: 6247931
doi: 10.1093/bioinformatics/bty407
Bisht, H. et al. Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proc. Natl Acad. Sci. USA 101, 6641–6646 (2004).
pubmed: 15096611
doi: 10.1073/pnas.0401939101
Buchholz, U. J. et al. Contributions of the structural proteins of severe respiratory syndrome coronavirus to protective immunity. Proc. Natl Acad. Sci. USA 101, 9804–9809 (2004).
pubmed: 15210961
doi: 10.1073/pnas.0403492101
Yang, Z. Y. et al. A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 428, 561–564 (2004).
pubmed: 15024391
pmcid: 7095382
doi: 10.1038/nature02463
Yong, C. Y., Ong, H. K., Yeap, S. K., Ho, K. L. & Tan, W. S. Recent advances in the vaccine development against Middle East Respiratory Syndrome-coronavirus. Front. Microbiol. 10, 1781 (2019).
pubmed: 31428074
pmcid: 6688523
doi: 10.3389/fmicb.2019.01781
Cuevas, J. M., Geller, R., Garijo, R., López-Aldeguer, J. & Sanjuán, R. Extremely high mutation rate of HIV-1 in vivo. PLoS Biol. 13, e1002251 (2015).
pubmed: 26375597
pmcid: 4574155
doi: 10.1371/journal.pbio.1002251
Subbaraman, H., Schanz, M. & Trkola, A. Broadly neutralizing antibodies: What is needed to move from a rare event in HIV-1 infection to vaccine efficacy? Retrovirology 15, 52 (2018).
Emsley, P. & Crispin, M. Structural analysis of glycoproteins: building N-linked glycans with coot. Acta Crystallogr. Sect. D. Struct. Biol. 74, 256–263 (2018).
doi: 10.1107/S2059798318005119
Dudas, G., Carvalho, L. M., Rambaut, A. & Bedford, T. MERS-CoV spillover at the camel-human interface. eLife 7, e37324 (2018).
pubmed: 29669683
pmcid: 5908435
doi: 10.7554/eLife.37324
Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).
pubmed: 22367748
pmcid: 3408070
doi: 10.1093/molbev/mss075
Drummond, A. J., Ho, S. Y. W., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88 (2006).
pubmed: 16683862
pmcid: 1395354
doi: 10.1371/journal.pbio.0040088
Drummond, A. J. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol. 22, 1185–1192 (2005).
pubmed: 15703244
doi: 10.1093/molbev/msi103
Shapiro, B., Rambaut, A. & Drummond, A. J. Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. Mol. Biol. Evol. 23, 7–9 (2006).
pubmed: 16177232
doi: 10.1093/molbev/msj021
Lemey, P., Minin, V. N., Bielejec, F., Pond, S. L. K. & Suchard, M. A. A counting renaissance: combining stochastic mapping and empirical Bayes to quickly detect amino acid sites under positive selection. Bioinformatics 28, 3248–3256 (2012).
pubmed: 23064000
pmcid: 3579240
doi: 10.1093/bioinformatics/bts580
Minin, V. N. & Suchard, M. A. Counting labeled transitions in continuous-time Markov models of evolution. J. Math. Biol. 56, 391–412 (2008).
pubmed: 17874105
doi: 10.1007/s00285-007-0120-8
Hohn, M. et al. SPARX, a new environment for cryo-EM image processing. J. Struct. Biol. 157, 47–55 (2007).
pubmed: 16931051
doi: 10.1016/j.jsb.2006.07.003
Cheng, Y., Grigorieff, N., Penczek, P. A. & Walz, T. A primer to single-particle cryo-electron microscopy. Cell 161, 438–449 (2015).
pubmed: 25910204
pmcid: 25910204
doi: 10.1016/j.cell.2015.03.050
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).
pubmed: 28250466
pmcid: 5494038
doi: 10.1038/nmeth.4193
Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).
pubmed: 26592709
pmcid: 4711343
doi: 10.1016/j.jsb.2015.11.003
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. CryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
pubmed: 28165473
doi: 10.1038/nmeth.4169
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).
pubmed: 30412051
pmcid: 6250425
doi: 10.7554/eLife.42166
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
pubmed: 15264254
doi: 10.1002/jcc.20084
Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).
pubmed: 17681537
doi: 10.1016/j.jmb.2007.05.022
Hastie, K. M. et al. Structural basis for antibody-mediated neutralization of Lassa virus. Science 356, 923–928 (2017).
pubmed: 28572385
pmcid: 6007842
doi: 10.1126/science.aam7260
Lee, P. S. et al. Receptor mimicry by antibody F045-092 facilitates universal binding to the H3 subtype of influenza virus. Nat. Commun. 5, 3614 (2014).
pubmed: 24717798
pmcid: 4358779
doi: 10.1038/ncomms4614
Kwon, Y. D. O. et al. Crystal structure, conformational fixation and entry-related interactions of mature ligand-free HIV-1 Env. Nat. Struct. Mol. Biol. 22, 522–531 (2015).
pubmed: 26098315
pmcid: 4706170
doi: 10.1038/nsmb.3051