Permissive microbiome characterizes human subjects with a neurovascular disease cavernous angioma.
Adolescent
Adult
Biomarkers
/ blood
Brain Neoplasms
/ complications
DNA, Bacterial
/ genetics
Feces
/ microbiology
Female
Gastrointestinal Microbiome
/ genetics
Hemangioma, Cavernous
/ complications
Humans
Intestines
/ microbiology
Male
Metagenomics
Middle Aged
Pilot Projects
RNA, Ribosomal, 16S
/ genetics
Young Adult
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
27 05 2020
27 05 2020
Historique:
received:
03
11
2019
accepted:
04
05
2020
entrez:
29
5
2020
pubmed:
29
5
2020
medline:
18
8
2020
Statut:
epublish
Résumé
Cavernous angiomas (CA) are common vascular anomalies causing brain hemorrhage. Based on mouse studies, roles of gram-negative bacteria and altered intestinal homeostasis have been implicated in CA pathogenesis, and pilot study had suggested potential microbiome differences between non-CA and CA individuals based on 16S rRNA gene sequencing. We here assess microbiome differences in a larger cohort of human subjects with and without CA, and among subjects with different clinical features, and conduct more definitive microbial analyses using metagenomic shotgun sequencing. Relative abundance of distinct bacterial species in CA patients is shown, consistent with postulated permissive microbiome driving CA lesion genesis via lipopolysaccharide signaling, in humans as in mice. Other microbiome differences are related to CA clinical behavior. Weighted combinations of microbiome signatures and plasma inflammatory biomarkers enhance associations with disease severity and hemorrhage. This is the first demonstration of a sensitive and specific diagnostic microbiome in a human neurovascular disease.
Identifiants
pubmed: 32461638
doi: 10.1038/s41467-020-16436-w
pii: 10.1038/s41467-020-16436-w
pmc: PMC7253448
doi:
Substances chimiques
Biomarkers
0
DNA, Bacterial
0
RNA, Ribosomal, 16S
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
2659Subventions
Organisme : NINDS NIH HHS
ID : P01 NS092521
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS100949
Pays : United States
Organisme : NINDS NIH HHS
ID : U54 NS065705
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL094326
Pays : United States
Organisme : NCATS NIH HHS
ID : UL1 TR001863
Pays : United States
Organisme : NINDS NIH HHS
ID : F30 NS100252
Pays : United States
Références
Awad, I. A. & Polster, S. P. Cavernous angiomas: deconstructing a neurosurgical disease. J. Neurosurg. 131, 1–13 (2019).
doi: 10.3171/2019.3.JNS181724
Akers, A. et al. Synopsis of Guidelines for the Clinical Management of Cerebral Cavernous Malformations: Consensus Recommendations Based on Systematic Literature Review by the Angioma Alliance Scientific Advisory Board Clinical Experts Panel. Neurosurgery 80, 665–680 (2017).
doi: 10.1093/neuros/nyx091
Wei, S. et al. Cerebral cavernous malformation proteins in barrier maintenance and regulation. Int. J. Mol. Sci. 21, https://doi.org/10.3390/ijms21020675 (2020).
doi: 10.3390/ijms21020675
Laberge-le Couteulx, S. et al. Truncating mutations in CCM1, encoding KRIT1, cause hereditary cavernous angiomas. Nat. Genet. 23, 189–193 (1999).
doi: 10.1038/13815
Sahoo, T. et al. Mutations in the gene encoding KRIT1, a Krev-1/rap1a binding protein, cause cerebral cavernous malformations (CCM1). Hum. Mol. Genet. 8, 2325–2333 (1999).
doi: 10.1093/hmg/8.12.2325
Liquori, C. L. et al. Mutations in a gene encoding a novel protein containing a phosphotyrosine-binding domain cause type 2 cerebral cavernous malformations. Am. J. Hum. Genet. 73, 1459–1464 (2003).
doi: 10.1086/380314
Denier, C. et al. Mutations within the MGC4607 gene cause cerebral cavernous malformations. Am. J. Hum. Genet. 74, 326–337 (2004).
doi: 10.1086/381718
Bergametti, F. et al. Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations. Am. J. Hum. Genet. 76, 42–51 (2005).
doi: 10.1086/426952
Guclu, B. et al. Mutations in apoptosis-related gene, PDCD10, cause cerebral cavernous malformation 3. Neurosurgery 57, 1008–1013 (2005).
doi: 10.1227/01.NEU.0000180811.56157.E1
McDonald, D. A. et al. Lesions from patients with sporadic cerebral cavernous malformations harbor somatic mutations in the CCM genes: evidence for a common biochemical pathway for CCM pathogenesis. Hum. Mol. Genet. 23, 4357–4370 (2014).
doi: 10.1093/hmg/ddu153
Draheim, K. M., Fisher, O. S., Boggon, T. J. & Calderwood, D. A. Cerebral cavernous malformation proteins at a glance. J. Cell Sci. 127, 701–707 (2014).
doi: 10.1242/jcs.138388
Choquet, H. et al. Association of cardiovascular risk factors with disease severity in cerebral cavernous malformation type 1 subjects with the common Hispanic mutation. Cerebrovasc. Dis. 37, 57–63 (2014).
doi: 10.1159/000356839
Choquet, H. et al. Polymorphisms in inflammatory and immune response genes associated with cerebral cavernous malformation type 1 severity. Cerebrovasc. Dis. 38, 433–440 (2014).
doi: 10.1159/000369200
Al-Shahi Salman, R. et al. Untreated clinical course of cerebral cavernous malformations: a prospective, population-based cohort study. Lancet Neurol. 11, 217–224 (2012).
doi: 10.1016/S1474-4422(12)70004-2
Shi, C. B. et al. Immune complex formation and in situ B-cell clonal expansion in human cerebral cavernous malformations. J. Neuroimmunol. 272, 67–75 (2014).
doi: 10.1016/j.jneuroim.2014.04.016
Shi, C. et al. B-cell depletion reduces the maturation of cerebral cavernous malformations in murine models. J. Neuroimmune Pharmacol. 11, 369–377 (2016).
doi: 10.1007/s11481-016-9670-0
Girard, R. et al. Plasma biomarkers of inflammation reflect seizures and hemorrhagic activity of cerebral cavernous malformations. Transl. Stroke Res. 9, 34–43 (2018).
doi: 10.1007/s12975-017-0561-3
Girard, R. et al. Plasma biomarkers of inflammation and angiogenesis predict cerebral cavernous malformation symptomatic hemorrhage or lesional growth. Circ. Res. 122, 1716–1721 (2018).
doi: 10.1161/CIRCRESAHA.118.312680
Lyne, S. B. et al. Biomarkers of cavernous angioma with symptomatic hemorrhage. JCI Insight 4, https://doi.org/10.1172/jci.insight.128577 (2019).
Tang, A. T. et al. Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature 545, 305–310 (2017).
doi: 10.1038/nature22075
Wang, Y. et al. The cerebral cavernous malformation disease causing gene KRIT1 participates in intestinal epithelial barrier maintenance and regulation. FASEB J. https://doi.org/10.1096/fj.201800343R (2018).
doi: 10.1096/fj.201800343R
Tang, A. T. et al. Distinct cellular roles for PDCD10 define a gut-brain axis in cerebral cavernous malformation. Sci. Transl. Med. 11, https://doi.org/10.1126/scitranslmed.aaw3521 (2019).
doi: 10.1126/scitranslmed.aaw3521
McDonald, D. et al. American Gut: an Open Platform for Citizen Science Microbiome Research. mSystems 3, https://doi.org/10.1128/mSystems.00031-18 (2018).
Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).
doi: 10.1038/ismej.2017.119
Thompson, P. A., Tobias, P. S., Viriyakosol, S., Kirkland, T. N. & Kitchens, R. L. Lipopolysaccharide (LPS)-binding protein inhibits responses to cell-bound LPS. J. Biol. Chem. 278, 28367–28371 (2003).
doi: 10.1074/jbc.M302921200
Lamping, N. et al. LPS-binding protein protects mice from septic shock caused by LPS or Gram-negative bacteria. J. Clin. Invest. 101, 2065–2071 (1998).
doi: 10.1172/JCI2338
Knapp, S., Florquin, S., Golenbock, D. T. & van der Poll, T. Pulmonary lipopolysaccharide (LPS)-binding protein inhibits the LPS-induced lung inflammation in vivo. J. Immunol. 176, 3189–3195 (2006).
doi: 10.4049/jimmunol.176.5.3189
Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).
doi: 10.1073/pnas.0804812105
Miquel, S. et al. Faecalibacterium prausnitzii and human intestinal health. Curr. Opin. Microbiol. 16, 255–261 (2013).
doi: 10.1016/j.mib.2013.06.003
O’Callaghan, A. & van Sinderen, D. Bifidobacteria and their role as members of the human gut microbiota. Front. Microbiol. 7, https://doi.org/10.3389/fmicb.2016.00925 (2016).
Haran, J. P. et al. Alzheimer’s disease microbiome is associated with dysregulation of the anti-inflammatory P-glycoprotein pathway. Mbio 10, https://doi.org/10.1128/mBio.00632-19 (2019).
Yoshida, N. et al. Bacteroides vulgatus and Bacteroides dorei reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis. Circulation 138, 2486–2498 (2018).
doi: 10.1161/CIRCULATIONAHA.118.033714
Vatanen, T. et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165, 1551 (2016).
doi: 10.1016/j.cell.2016.05.056
Jiang, W. et al. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci. Rep. 5, 8096 (2015).
doi: 10.1038/srep08096
Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).
doi: 10.1126/science.1208344
Wu, G. D. et al. Sampling and pyrosequencing methods for characterizing bacterial communities in the human gut using 16S sequence tags. BMC Microbiol. 10, https://doi.org/10.1186/1471-2180-10-206 (2010).
doi: 10.1186/1471-2180-10-206
Kim, D. et al. Optimizing methods and dodging pitfalls in microbiome research. Microbiome 5, 52 (2017).
doi: 10.1186/s40168-017-0267-5
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).
doi: 10.1038/s41587-019-0209-9
Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2, https://doi.org/10.1128/mSystems.00191-16 (2017).
Mandal, S. et al. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb. Ecol. Health Dis. 26, 27663 (2015).
pubmed: 26028277
Truong, D. T. et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat. Methods 12, 902–903 (2015).
doi: 10.1038/nmeth.3589
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
doi: 10.1038/nmeth.1923
Franzosa, E. A. et al. Species-level functional profiling of metagenomes and metatranscriptomes. Nat. Methods 15, 962–968 (2018).
doi: 10.1038/s41592-018-0176-y
Kursa, M. B. & Rudnicki, W. R. Feature selection with the Boruta package. J. Stat. Softw. 36, 1–13 (2010).
doi: 10.18637/jss.v036.i11
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
doi: 10.1093/nar/gkv007