Photocatalytic water splitting with a quantum efficiency of almost unity.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
05 2020
Historique:
received: 26 09 2019
accepted: 02 04 2020
entrez: 29 5 2020
pubmed: 29 5 2020
medline: 29 5 2020
Statut: ppublish

Résumé

Overall water splitting, evolving hydrogen and oxygen in a 2:1 stoichiometric ratio,  using particulate photocatalysts is a potential means of achieving scalable and economically viable solar hydrogen production. To obtain high solar energy conversion efficiency, the quantum efficiency of the photocatalytic reaction must be increased over a wide range of wavelengths and semiconductors with narrow bandgaps need to be designed. However, the quantum efficiency associated with overall water splitting using existing photocatalysts is typically lower than ten per cent

Identifiants

pubmed: 32461647
doi: 10.1038/s41586-020-2278-9
pii: 10.1038/s41586-020-2278-9
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

411-414

Commentaires et corrections

Type : CommentIn

Références

Kudo, A. & Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009).
doi: 10.1039/B800489G
Chen, S., Takata, T. & Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2, 17050 (2017).
doi: 10.1038/natrevmats.2017.50
Goto, Y. et al. A particulate photocatalyst water-splitting panel for large-scale solar hydrogen production. Joule 2, 509–520 (2018).
doi: 10.1016/j.joule.2017.12.009
Ham, Y. et al. Flux-mediated doping of SrTiO
doi: 10.1039/C5TA04843E
Maeda, K. & Domen, K. Photocatalytic overall water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1, 2655–2661 (2010).
doi: 10.1021/jz1007966
Lyu, H. et al. An Al-doped SrTiO
doi: 10.1039/C8SC05757E
Sakata, Y., Hayashi, T., Yasunaga, R., Yanaga, N. & Imamura, H. Remarkably high apparent quantum yield of the overall photocatalytic H
doi: 10.1039/C5CC03483C
Kato, H., Asakura, K. & Kudo, A. Highly efficient water splitting into H
doi: 10.1021/ja027751g
Chiang, T. H. et al. Efficient photocatalytic water splitting using Al-doped SrTiO
doi: 10.1021/acscatal.7b04264
Li, Y. et al. Photocatalytic water splitting by N-TiO
doi: 10.1038/s41467-019-12385-1
Wagner, F. T. & Somorojai, G. A. Photocatalytic and photoelectrochemical hydrogen production on strontium titanate single crystals. J. Am. Chem. Soc. 102, 5494–5502 (1980).
doi: 10.1021/ja00537a013
Domen, K. et al. Photocatalytic decomposition of water vapour on an NiO-SrTiO
Lehn, J. M., Sauvage, J. P., Zlessel, R. & Hilaire, L. Water photolysis by UV irradiation of rhodium loaded strontium titanate catalysts. Relation between catalytic activity and nature of the deposit from combined photolysis and ESCA studies. Isr. J. Chem. 22, 168–172 (1982).
doi: 10.1002/ijch.198200032
Takata, T. & Domen, K. Defect engineering of photocatalyst by doping of aliovalent metal cations for efficient water splitting. J. Phys. Chem. C 113, 19386–19388 (2009).
doi: 10.1021/jp908621e
Kanan, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co
doi: 10.1126/science.1162018
Ohno, T., Sarukawa, K. & Matsumura, M. Crystal faces of rutile and anatase TiO
doi: 10.1039/b202140d
Liu, G., Yu, J. C., Lu, G. Q. & Cheng, H. M. Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties. Chem. Commun. 47, 6763–6783 (2011).
doi: 10.1039/c1cc10665a
Xie, Y. P., Liu, G., Yina, L. & Cheng, H. M. Crystal facet-dependent photocatalytic oxidation and reduction reactivity of monoclinic WO
doi: 10.1039/c2jm16178h
Zhen, C., Yu, J. C., Liu, G. & Cheng, H. M. Selective deposition of redox co-catalyst(s) to improve the photocatalytic activity of single-domain ferroelectric PbTiO
doi: 10.1039/C4CC04999C
Li, R. et al. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO
doi: 10.1038/ncomms2401
Mu, L. et al. Enhancing charge separation on high symmetry SrTiO
doi: 10.1039/C6EE00526H
Luo, Y. et al. Construction of spatial charge separation facets on BaTaO
doi: 10.1021/acsami.9b03747
Wang, Z. et al. Overall water splitting by Ta
doi: 10.1038/s41929-018-0134-1
Wang, Q. et al. Oxysulfide photocatalyst for visible-light-driven overall water splitting. Nat. Mater. 18, 827–832 (2019).
doi: 10.1038/s41563-019-0399-z
Frederikse, H., Thurber, W. & Hosler, W. Electronic transport in SrTiO
doi: 10.1103/PhysRev.134.A442
Weaver, H. Dielectric properties of single crystals of SrTiO
doi: 10.1016/0022-3697(59)90226-4
Zhao, Z. et al. Electronic structure basis for enhanced overall water splitting photocatalysis with aluminum doped SrTiO
doi: 10.1039/C9EE00310J
Konta, R., Ishii, T., Kato, H. & Kudo, A. Photocatalytic activities of noble metal ion doped SrTiO
doi: 10.1021/jp049556p
Cohen, M. I. & Blunt, R. F. Optical properties of SrTiO
doi: 10.1103/PhysRev.168.929
Zollner, S. et al. Optical properties of bulk and thin film SrTiO
doi: 10.1116/1.1303741
Sze, S. M. Physics of Semiconductor Devices (John Wiley & Sons, 1981).

Auteurs

Tsuyoshi Takata (T)

Research Initiative for Supra-Materials, Shinshu University, Nagano, Japan.

Junzhe Jiang (J)

Graduate School of Science and Technology for Innovation, Yamaguchi University, Ube, Japan.

Yoshihisa Sakata (Y)

Graduate School of Science and Technology for Innovation, Yamaguchi University, Ube, Japan.

Mamiko Nakabayashi (M)

Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Tokyo, Japan.

Naoya Shibata (N)

Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Tokyo, Japan.

Vikas Nandal (V)

Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.

Kazuhiko Seki (K)

Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.

Takashi Hisatomi (T)

Research Initiative for Supra-Materials, Shinshu University, Nagano, Japan.

Kazunari Domen (K)

Research Initiative for Supra-Materials, Shinshu University, Nagano, Japan. domen@shinshu-u.ac.jp.
Office of University Professors, The University of Tokyo, Tokyo, Japan. domen@shinshu-u.ac.jp.

Classifications MeSH