Different EEG brain activity in right and left handers during visually induced self-motion perception.
EEG
Hemispherical lateralization
Right and left handers
Roll vection
Self-motion perception
Thalamo-cortical vestibular dominance
Visual motion perception
Journal
Journal of neurology
ISSN: 1432-1459
Titre abrégé: J Neurol
Pays: Germany
ID NLM: 0423161
Informations de publication
Date de publication:
Dec 2020
Dec 2020
Historique:
received:
27
02
2020
accepted:
13
05
2020
revised:
11
05
2020
pubmed:
29
5
2020
medline:
22
6
2021
entrez:
29
5
2020
Statut:
ppublish
Résumé
Visually induced self-motion perception (vection) relies on visual-vestibular interaction. Imaging studies using vestibular stimulation have revealed a vestibular thalamo-cortical dominance in the right hemisphere in right handers and the left hemisphere in left handers. We investigated if the behavioural characteristics and neural correlates of vection differ between healthy left and right-handed individuals. 64-channel EEG was recorded while 25 right handers and 25 left handers were exposed to vection-compatible roll motion (coherent motion) and a matched, control condition (incoherent motion). Behavioural characteristics, i.e. vection presence, onset latency, duration and subjective strength, were also recorded. The behavioural characteristics of vection did not differ between left and right handers (all p > 0.05). Fast Fourier Transform (FFT) analysis revealed significant decreases in alpha power during vection-compatible roll motion (p < 0.05). The topography of this decrease was handedness-dependent, with left handers showing a left lateralized centro-parietal decrease and right handers showing a bilateral midline centro-parietal decrease. Further time-frequency analysis, time locked to vection onset, revealed a comparable decrease in alpha power around vection onset and a relative increase in alpha power during ongoing vection, for left and right handers. No effects were observed in theta and beta bands. Left and right-handed individuals show vection-related alpha power decreases at different topographical regions, possibly related to the influence of handedness-dependent vestibular dominance in the visual-vestibular interaction that facilitates visual self-motion perception. Despite this difference in where vection-related activity is observed, left and right handers demonstrate comparable perception and underlying alpha band changes during vection.
Identifiants
pubmed: 32462347
doi: 10.1007/s00415-020-09915-z
pii: 10.1007/s00415-020-09915-z
pmc: PMC7718188
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
79-90Références
Behav Brain Res. 2014 Sep 1;271:294-301
pubmed: 24931795
Front Psychol. 2016 Aug 10;7:1205
pubmed: 27559328
Curr Opin Neurol. 2018 Feb;31(1):96-104
pubmed: 29189299
Ann N Y Acad Sci. 2002 Apr;956:230-41
pubmed: 11960807
Trends Cogn Sci. 2012 Dec;16(12):606-17
pubmed: 23141428
J Neurophysiol. 2016 Aug 1;116(2):263-71
pubmed: 27075535
Front Hum Neurosci. 2014 Feb 25;8:71
pubmed: 24616681
PLoS One. 2013;8(4):e60241
pubmed: 23577096
Neuroimage. 2002 Aug;16(4):873-82
pubmed: 12202076
Neuroimage. 2003 Nov;20(3):1505-17
pubmed: 14642463
Hum Brain Mapp. 2002 Jun;16(2):92-103
pubmed: 11954059
J Neurophysiol. 2011 Mar;105(3):1318-26
pubmed: 21228304
J Neurophysiol. 2020 Jan 1;123(1):346-355
pubmed: 31774351
Science. 2005 Apr 15;308(5720):416-9
pubmed: 15831760
Neuroimage. 2008 Oct 1;42(4):1508-18
pubmed: 18644454
J Neurol. 2015 Jan;262(1):214-5
pubmed: 25346066
Neuroimage. 2006 Jul 15;31(4):1567-79
pubmed: 16580846
Nat Neurosci. 2020 Dec;23(12):1655-1665
pubmed: 33230329
Biol Psychol. 2006 May;72(2):188-97
pubmed: 16338048
Brain. 1994 Oct;117 ( Pt 5):1039-54
pubmed: 7953587
Neuroimage. 2012 Mar;60(1):162-9
pubmed: 22209784
Brain. 1998 Sep;121 ( Pt 9):1749-58
pubmed: 9762962
Hum Brain Mapp. 2004 Mar;21(3):143-53
pubmed: 14755834
Hum Brain Mapp. 2006 Jul;27(7):611-21
pubmed: 16281284
BMC Neurosci. 2012 Jul 16;13:81
pubmed: 22800430
Exp Brain Res. 2000 Apr;131(4):393-405
pubmed: 10803409
Exp Brain Res. 1999 Jun;126(4):495-500
pubmed: 10422712
Brain Res Cogn Brain Res. 2001 Dec;12(3):441-9
pubmed: 11689304
J Neurosci. 2011 Oct 5;31(40):14076-84
pubmed: 21976492
Brain Res Cogn Brain Res. 2002 Nov;14(3):370-82
pubmed: 12421660
Neuroscience. 2019 Jun 1;408:378-387
pubmed: 31026563
J Neurosci Methods. 2007 Aug 15;164(1):177-90
pubmed: 17517438
Sci Rep. 2017 Jul 12;7(1):5208
pubmed: 28701732
Exp Brain Res. 2002 Mar;143(1):78-88
pubmed: 11907693
Methods Find Exp Clin Pharmacol. 2002;24 Suppl D:5-12
pubmed: 12575463
Cereb Cortex. 2010 Aug;20(8):1964-73
pubmed: 20034998
Cereb Cortex. 2003 Sep;13(9):994-1007
pubmed: 12902399
Neuroimage. 2008 Jan 1;39(1):19-31
pubmed: 17919936
Front Psychol. 2015 Jun 08;6:775
pubmed: 26106350
Clin Neurophysiol. 2002 May;113(5):702-12
pubmed: 11976050
Neuroreport. 2002 Dec 20;13(18):2487-92
pubmed: 12499854
Neuroscience. 2012 Jun 14;212:159-79
pubmed: 22516007
Neuroreport. 1998 Mar 30;9(5):893-7
pubmed: 9579686
J Vestib Res. 1996 Sep-Oct;6(5):331-41
pubmed: 8887891
Neuroreport. 2002 Oct 7;13(14):1805-8
pubmed: 12395128
Int J Psychophysiol. 1996 Nov;24(1-2):39-46
pubmed: 8978434
Eur J Neurosci. 2020 Apr;51(7):1657-1675
pubmed: 31408562
J Neurosci Methods. 2004 Mar 15;134(1):9-21
pubmed: 15102499