The genetic architecture of maternal effects across ontogeny in the red deer.
Cervus elaphus
cross-sex correlation
genetic constraint
life-history traits
maternal genetic effects
total heritability
Journal
Evolution; international journal of organic evolution
ISSN: 1558-5646
Titre abrégé: Evolution
Pays: United States
ID NLM: 0373224
Informations de publication
Date de publication:
07 2020
07 2020
Historique:
received:
18
02
2020
revised:
24
04
2020
accepted:
04
05
2020
pubmed:
29
5
2020
medline:
24
3
2021
entrez:
29
5
2020
Statut:
ppublish
Résumé
Maternal effects, either environmental or genetic in origin, are an underappreciated source of phenotypic variance in natural populations. Maternal genetic effects have the potential to constrain or enhance the evolution of offspring traits depending on their magnitude and their genetic correlation with direct genetic effects. We estimated the maternal effect variance and its genetic component for 12 traits expressed over the life history in a pedigreed population of wild red deer (morphology, survival/longevity, breeding success). We only found support for maternal genetic effect variance in the two neonatal morphological traits: birth weight (
Banques de données
Dryad
['10.5061/dryad.gtht76hhs']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1378-1391Subventions
Organisme : UK Natural Environment Research Council
Pays : International
Organisme : Wellcome Trust
Pays : United Kingdom
Informations de copyright
© 2020 The Authors. Evolution published by Wiley Periodicals LLC on behalf of The Society for the Study of Evolution.
Références
Andres, D., T. H. Clutton-Brock, L. E. B. Kruuk, J. M. Pemberton, K. V. Stopher, and K. E. Ruckstuhl. 2013. Sex differences in the consequences of maternal loss in a long-lived mammal, the red deer (Cervus elaphus). Behav. Ecol. Sociobiol. 67:1249-1258.
Badyaev, A. 2005. Maternal inheritance and rapid evolution of sexual size dimorphism: passive effects or active strategies? Am. Nat. 166:S17-S30.
Badyaev, A., G. Hill, M. Beck, A. Dervan, R. Duckworth, K. McGraw, P. Nolan, and L. Whittingham. 2002. Sex-biased hatching order and adaptive population divergence in a passerine bird. Science 295:316-318.
Bérénos, C., P. A. Ellis, J. G. Pilkington, and J. M. Pemberton. 2014. Estimating quantitative genetic parameters in wild populations: a comparison of pedigree and genomic approaches. Mol. Ecol. 23:3434-3451.
Bernardo, J. 1996. Maternal effects in animal ecology. Am. Zool. 36:83-105.
Bonnet, T., M. B. Morrissey, A. Morris, S. Morris, T. H. Clutton-Brock, J. M. Pemberton, and L. E. B. Kruuk. 2019. The role of selection and evolution in changing parturition date in a red deer population. PLoS Biol. 17:e3000493.
Cheverud, J. 1984a. Evolution by kin selection-a quantitatve genetic model illustrated by maternal performance in mice. Evolution 38:766-777.
Cheverud, J. 1984b. Quantitiative genetics and developmental constraints on evolution by selection. J. Theoret. Biol. 110:155-171.
Cheverud, J., J. Rutledge, and W. Atchley. 1983. Quantitative genetics of development-genetic correlations among age-specific trait values and the evolution of ontogeny. Evolution 37:895-905.
Clements, M. N., T. H. Clutton-Brock, S. D. Albon, J. M. Pemberton, and L. E. B. Kruuk. 2011. Gestation length variation in a wild ungulate. Funct. Ecol. 25:691-703.
Clutton-Brock, T. 2016. Mammal societies. Wiley Blackwell, Chichester, U.K.
Clutton-Brock, T., F. Guinness, and S. Albon. 1982. Red deer. Behavior and ecology of two sexes. Edinburgh Univ. Press, Edinburgh.
Clutton-Brock, T., S. Albon, and F. Guinness. 1985. Parental investment and sex-differences in juvenile mortality in birds and mammals. Nature 313:131-133.
Clutton-Brock, T., M. Major, S. Albon, and F. Guinness. 1987. Early development and population-dynamics in red deer. 1. Density-dependent effects on juvenile survival. J. Anim. Ecol. 56:53-67.
Falconer, D., and T. MacKay. 1996. Introduction to quantitative genetics. 4th ed. Longmans Greenn, Harlow, Essex, U.K.
Foerster, K., T. Coulson, B. C. Sheldon, J. M. Pemberton, T. H. Clutton-Brock, and L. E. B. Kruuk. 2007. Sexually antagonistic genetic variation for fitness in red deer. Nature 447:1107-U9.
Froy, H., J. Martin, K. Stopher, A. Morris, S. Morris, T. Clutton-Brock, J. M. Pemberton, and L. E. B. Kruuk. 2019. Consistent within-individual plasticity is sufficient to explain temperature responses in red deer reproductive traits. J. Evol. Biol. 32:1194-1206.
Hadfield, J. D. 2012. The quantitative genetic theory of parental effects. Pp. 267-284 in N. J. Royle, P. T. Smiseth, and M. Kolliker, eds. Evolution of parental care. Oxford Univ. Press, Oxford, U.K.
Hadfield, J. D. 2010. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33:1-22.
Hadfield, J. D., D. S. Richardson, and T. Burke. 2006. Towards unbiased parentage assignment: combining genetic, behavioural and spatial data in a Bayesian framework. Mol. Ecol. 15:3715-3730.
Hill, W. G., M. E. Goddard, and P. M. Visscher. 2008. Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet. 4.
Huisman, J. 2017. Pedigree reconstruction from SNP data: parentage assignment, sibship clustering and beyond. Mol. Ecol. Resour. 17:1009-1024.
Huisman, J., L. E. B. Kruuk, P. A. Ellis, T. Clutton-Brock, and J. M. Pemberton. 2016. Inbreeding depression across the lifespan in a wild mammal population. PNAS 113:3585-3590.
Kirkpatrick, M., and R. Lande. 1989. The evolution of maternal characters. Evolution 43:485-503.
Kruuk, L. E. B., T. Clutton-Brock, K. Rose, and F. Guinness. 1999. Early determinants of lifetime reproductive success differ between the sexes in red deer. Proc. R. Soc. B 266:1655-1661.
Kruuk, L. E. B., T. Clutton-Brock, J. Slate, J. M. Pemberton, S. Brotherstone, and F. Guinness. 2000. Heritability of fitness in a wild mammal population. PNAS 97:698-703.
Kruuk, L. E. B. 2004. Estimating genetic parameters in natural populations using the “animal model”. Proc. R. Soc. Ser. B 359:873-890.
Kruuk, L. E. B., and J. D. Hadfield. 2007. How to separate genetic and environmental causes of similarity between relatives. J. Evol. Biol. 20:1890-1903.
Kruuk, L. E. B., J. Slate, and A. J. Wilson. 2008. New answers for old questions: the evolutionary quantitative genetics of wild animal populations. Annu. Rev. Ecol. Evol. Syst. 39:525-548.
Kruuk, L. E. B., J. Livingston, A. Kahn, and M. D. Jennions. 2015. Sex-specific maternal effects in a viviparous fish. Biol. Lett. 11.
Lindholm, A. K., J. Hunt, and R. Brooks. 2006. Where do all the maternal effects go? Variation in offspring body size through ontogeny in the live-bearing fish Poecilia parae. Biol. Lett. 2:586-589.
Logan, C. J., L. E. B. Kruuk, R. Stanley, A. M. Thompson, and T. H. Clutton-Brock. 2016. Endocranial volume is heritable and is associated with longevity and fitness in a wild mammal. R. Soc. Open Sci. 3.
McAdam, A., S. Boutin, D. Reale, and D. Berteaux. 2002. Maternal effects and the potential for evolution in a natural population of animals. Evolution 56:846-851.
McFarlane, S. E., J. C. Gorrell, D. W. Coltman, M. M. Humphries, S. Boutin, and A. G. McAdam. 2015. The nature of nurture in a wild mammal's fitness. Proc. R. Soc. B 282.
Merilä, J., and B. Sheldon. 1999. Genetic architecture of fitness and nonfitness traits: empirical patterns and development of ideas. Heredity 83:103-109.
Merilä, J., B. Sheldon, and L. Kruuk. 2001. Explaining stasis: microevolutionary studies in natural populations. Genetica 112:199-222.
Meyer, K. 1992. Variance-components due to direct and maternal effects for growth traits of Australian beef-cattle. Livest. Prod. Sci. 31:179-204.
Miller, S., and J. Wilton. 1999. Genetic relationships among direct and maternal components of milk yield and maternal weaning gain in a multibreed beef herd. J. Anim. Sci. 77:1155-1161.
Moore, M., H. Whiteman, and R. Martin. 2019. A mother's legacy: the strength of maternal effects in animal populations. Ecol. Lett. 22:1620-1628.
Morrissey, M. B., C. A. Walling, A. J. Wilson, J. M. Pemberton, T. H. Clutton-Brock, and L. E. B. Kruuk. 2012. Genetic analysis of life-history constraint and evolution in a wild ungulate population. Am. Nat. 179:E97-E114.
Mousseau, T., and H. Dingle. 1991. Maternal effects in insect life histories. Annu. Rev. Entomol. 36:511-534.
Mousseau, T., and C. Fox. 1998. Maternal effects as adaptations. Oxford Univ. Press, Oxford, U.K.
Pujol, B., S. Blanchet, A. Charmantier, E. Danchin, B. Facon, P. Marrot, F. Roux, I. Scotti, C. Teplitsky, C. E. Thomson et al. 2018. The missing response to selection in the wild. Trends Ecol. Evol. 33:337-346.
Quéméré, E., J. M. Gaillard, M. Galan, C. Vanpe, I. David, M. Pellerin, P. Kjellander, A. J. M. Hewison, and J. M. Pemberton. 2018. Between-population differences in the genetic and maternal components of body mass in roe deer. BMC Evol. Biol. 18:39.
Räsänen, K., and L. E. B. Kruuk. 2007. Maternal effects and evolution at ecological time-scales. Funct. Ecol. 21:408-421.
Riska, B., J. Rutledge, and W. Atchley. 1985. Covariance between direct and maternal genetic-effects in mice, with a model of persistent environmental-influences. Genet. Res. 45:287-297.
Rollinson, N., and L. Rowe. 2015. Persistent directional selection on body size and a resolution to the paradox of stasis. Evolution 69:2441-2451.
Stopher, K. V., C. A. Walling, A. Morris, F. E. Guinness, T. H. Clutton-Brock, J. M. Pemberton, and D. H. Nussey. 2012. Shared spatial effect on quantitative genetic parameters: accounting for spatial autocorrelation an home range overlap reduces estimates of heritability in red deer. Evolution 66:2411-2426.
Svensson, E. I., A. G. McAdam, and B. Sinervo. 2009. Intralocus sexual conflict over immune defence, gender load, and sex-specific signaling in a natural lizard population. Evolution 63:3124-3135.
Thomson, C. E., F. Bayer, N. Crouch, S. Farrell, E. Heap, E. Mittell, M. Zurita-Cassinello, and J. D. Hadfield. 2017. Selection on parental performance opposes selection for larger body mass in a wild population of blue tits. Evolution 71:716-732.
de Villemereuil, P., H. Schielzeth, S. Nakagawa, and M. Morrissey. 2016. General methods for evolutionary quantitative genetic inference from generalized mixed models. Genetics 204:1281-1294.
Walling, C. A., J. M. Pemberton, J. D. Hadfield, and L. E. B. Kruuk. 2010. Comparing parentage inference software: reanalysis of a red deer pedigree. Mol. Ecol. 19:1914-1928.
Walling, C. A., M. B. Morrissey, K. Foerster, T. H. Clutton-Brock, J. M. Pemberton, and L. E. B. Kruuk. 2014. A multivariate analysis of genetic constraints to life history evolution in a wild population of red deer. Genetics 198:1735-1749.
Wang, J., and A. W. Santure. 2009. Parentage and sibship inference from multilocus genotype data under polygamy. Genetics 181:1579-1594.
White, S. J., and A. J. Wilson. 2019. Evolutionary genetics of personality in the Trinidadian guppy I: maternal and additive genetic effects across ontogeny. Heredity 122:1-14.
Willham, R. L. 1963. The covariance between relatives for characters composed of components contributed by related individuals. Biometrics 19:18-27.
---. 1972. The role of maternal effects in animal breeding: III. Biometrical aspects of maternal effects in animals. J. Anim. Sci. 35:1288-1293.
Wilson, A., and D. Réale. 2006. Ontogeny of additive and maternal genetic effects: lessons from domestic mammals. Am. Nat. 167:E23-E38.
Wilson, A., D. Coltman, J. Pemberton, A. Overall, K. Byrne, and L. Kruuk. 2005. Maternal genetic effects set the potential for evolution in a free-living vertebrate population. J. Evol. Biol. 18:405-414.
Wolf, J. B., and M. J. Wade. 2016. Evolutionary genetics of maternal effects. Evolution 70:827-839.
Wolf, J., E. Brodie, J. Cheverud, A. Moore, and M. Wade. 1998. Evolutionary consequences of indirect genetic effects. Trends Ecol. Evol. 13:64-69.