Distinct cold tolerance traits independently vary across genotypes in Drosophila melanogaster.
Cold tolerance
Drosophila melanogaster
frost
genetic variation
heat-shock proteins
trait correlation
Journal
Evolution; international journal of organic evolution
ISSN: 1558-5646
Titre abrégé: Evolution
Pays: United States
ID NLM: 0373224
Informations de publication
Date de publication:
07 2020
07 2020
Historique:
received:
24
07
2019
accepted:
25
05
2020
pubmed:
29
5
2020
medline:
24
3
2021
entrez:
29
5
2020
Statut:
ppublish
Résumé
Cold tolerance, the ability to cope with low temperature stress, is a critical adaptation in thermally variable environments. An individual's cold tolerance comprises several traits including minimum temperatures for growth and activity, ability to survive severe cold, and ability to resume normal function after cold subsides. Across species, these traits are correlated, suggesting they were shaped by shared evolutionary processes or possibly share physiological mechanisms. However, the extent to which cold tolerance traits and their associated mechanisms covary within populations has not been assessed. We measured five cold tolerance traits-critical thermal minimum, chill coma recovery, short- and long-term cold tolerance, and cold-induced changes in locomotor behavior-along with cold-induced expression of two genes with possible roles in cold tolerance (heat shock protein 70 and frost)-across 12 lines of Drosophila melanogaster derived from a single population. We observed significant genetic variation in all traits, but few were correlated across genotypes, and these correlations were sex-specific. Further, cold-induced gene expression varied by genotype, but there was no evidence supporting our hypothesis that cold-hardy lines would have either higher baseline expression or induction of stress genes. These results suggest cold tolerance traits possess unique mechanisms and have the capacity to evolve independently.
Banques de données
Dryad
['10.5061/dryad.9kd51c5dn']
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
1437-1450Subventions
Organisme : National Science Foundation
ID : 1826689
Pays : International
Organisme : National Institute of Food and Agriculture
ID : 1010996
Pays : International
Organisme : National Institute of Food and Agriculture
ID : 2018-67012-28000
Pays : International
Informations de copyright
© 2020 The Authors. Evolution © 2020 The Society for the Study of Evolution.
Références
Addo-Bediako, A., S. L. Chown, and K. J. Gaston. 2000. Thermal tolerance, climatic variability and latitude. Proc. R. Soc. B 267:739-745.
Andersen, J. L., T. Manenti, J. G. Sørensen, H. A. Macmillan, V. Loeschcke, and J. Overgaard. 2015. How to assess Drosophila cold tolerance: chill coma temperature and lower lethal temperature are the best predictors of cold distribution limits. Funct. Ecol. 29:55-65.
Andersen, M. K., and J. Overgaard. 2020. Maintenance of hindgut reabsorption during cold exposure is a key adaptation for Drosophila cold tolerance. J. Exp. Biol. 223:jeb213934.
Bale, J. S., C. Gerday, A. Parker, M. A. Marahiel, I. A. Shanks, P. L. Davies, and G. Warren. 2002. Insects and low temperatures: from molecular biology to distributions and abundance. Philos. Trans. R. Soc. B Biol. Sci. 357:849-862.
Bechsgaard, J. S., A. A. Hoffmann, C. Sgró, V. Loeschcke, T. Bilde, and T. N. Kristensen. 2013. A comparison of inbreeding depression in tropical and widespread Drosophila species. PLoS One 8:1-6.
Bellard, C., W. Thuiller, B. Leroy, P. Genovesi, M. Bakkenes, and F. Courchamp. 2013. Will climate change promote future invasions? Glob. Chang. Biol. 19:3740-3748.
Boardman, L., J. G. Sørensen, S. A. Johnson, and J. S. Terblanche. 2011. Interactions between controlled atmospheres and low temperature tolerance: a review of biochemical mechanisms. Front. Physiol. 2:1-8.
Bing, X., J. Zhang, and B. J. Sinclair. 2012. A comparison of Frost expression among species and life stages of Drosophila. Insect Mol. Biol. 21:31-39.
Cheverud, J. M. 1988. A comparison of genetic and phenotypic correlations. Evolution 42:958.
Chown, S. L., K. R. Jumbam, J. G. Sørensen, and J. S. Terblanche. 2009. Phenotypic variance, plasticity and heritability estimates of critical thermal limits depend on methodological context. Funct. Ecol. 23:133-140.
Clark, M. S., and M. R. Worland. 2008. How insects survive the cold: molecular mechanisms-a review. J. Comp. Physiol. B 178:917-933.
Colinet, H., and A. A. Hoffmann. 2012. Comparing phenotypic effects and molecular correlates of developmental, gradual and rapid cold acclimation responses in Drosophila melanogaster. Funct. Ecol. 26:84-93.
Colinet, H., S. F. Lee, and A. Hoffmann. 2010a. Temporal expression of heat shock genes during cold stress and recovery from chill coma in adult Drosophila melanogaster. FEBS J. 277:174-185.
Colinet, H., S. F. Lee, and A. Hoffmann. 2010b. Functional characterization of the Frost gene in Drosophila melanogaster: importance for recovery from chill coma. PLoS One 5:1-7.
Colinet, H., S. F. Lee, and A. Hoffmann. 2010c. Knocking down expression of Hsp22 and Hsp23 by RNA interference affects recovery from chill coma in Drosophila melanogaster. J. Exp. Biol. 213:4146-4150.
Colinet, H., J. Overgaard, E. Com, and J. G. Sørensen. 2013. Proteomic profiling of thermal acclimation in Drosophila melanogaster. Insect Biochem. Mol. Biol. 43:352-365.
Colinet, H., B. J. Sinclair, P. Vernon, and D. Renault. 2015. Insects in fluctuating thermal environments. Annu. Rev. Entomol. 60:123-140.
Cooper, B. S., L. A. Hammad, and K. L. Montooth. 2014. Thermal adaptation of cellular membranes in natural populations of Drosophila melanogaster. Funct. Ecol. 28:886-894.
Denlinger, D. L., and R. L. Lee. 2010. Low temperature biology of insects. Cambridge Univ. Press, Cambridge.
Dochtermann, N. A., and D. A. Roff. 2010. Applying a quantitative genetics framework to behavioural syndrome research. Philos. Trans. R. Soc. Lond. B 365:4013-4020.
Duman, J. G. 2015. Animal ice-binding (antifreeze) proteins and glycolipids: an overview with emphasis on physiological function. J. Exp. Biol. 218:1846-1855.
Emerson, K. J., A. M. Uyemura, K. L. McDaniel, P. S. Schmidt, W. E. Bradshaw, and C. M. Holzapfel. 2009. Environmental control of ovarian dormancy in natural populations of drosophila melanogaster. J. Comp. Physiol. A 195:825-829.
Everman, E. R., J. L. Delzeit, F. Kate Hunter, J. M. Gleason, and T. J. Morgan. 2018. Costs of cold acclimation on survival and reproductive behavior in Drosophila melanogaster. PLoS One 13:1-19.
Freda, P. J., J. T. Alex, T. J. Morgan, and G. J. Ragland. 2017. Genetic decoupling of thermal hardiness across metamorphosis in Drosophila melanogaster. Integr. Comp. Biol. 57:999-1009.
Fujiwara, Y., and D. L. Denlinger. 2007. p38 MAPK is a likely component of the signal transduction pathway triggering rapid cold hardening in the flesh fly Sarcophaga crassipalpis. J. Exp. Biol. 210:3295-3300.
Gantz, J. D., and R. E. Lee. 2015. The limits of drought-induced rapid cold-hardening: extremely brief, mild desiccation triggers enhanced freeze-tolerance in Eurosta solidaginis larvae. J. Insect Physiol. 73:30-36.
Garcia, M. J., and N. M. Teets. 2019. Cold stress results in sustained locomotor and behavioral deficits in Drosophila melanogaster. J. Exp. Zool. Part A 331:192-200.
Gerken, A. R., O. C. Eller, D. A. Hahn, and T. J. Morgan. 2015. Constraints, independence, and evolution of thermal plasticity: probing genetic architecture of long- and short-term thermal acclimation. Proc. Natl. Acad. Sci. 112:4399-4404.
Gerken, A. R., T. F. C. Mackay, and T. J. Morgan. 2016. Artificial selection on chill-coma recovery time in Drosophila melanogaster: direct and correlated responses to selection. J. Therm. Biol. 59:77-85.
Gerken, A. R., O. C. Eller-Smith, and T. J. Morgan. 2018. Speed of exposure to rapid cold hardening and genotype drive the level of acclimation response in Drosophila melanogaster. J. Therm. Biol. 76:21-28.
Hazell, S. P., B. P. Pedersen, M. R. Worland, T. M. Blackburn, and J. S. Bale. 2008. A method for the rapid measurement of thermal tolerance traits in studies of small insects. Physiol. Entomol. 33:389-394.
Hoffmann, A. A. 2010. Physiological climatic limits in Drosophila: patterns and implications. J. Exp. Biol. 213:870-880.
Hoffmann, A. A., A. Anderson, and R. Hallas. 2002. Opposing clines for high and low temperature resistance in Drosophila melanogaster. Ecol. Lett. 5:614-618.
Houle, D., and E. J. Márquez. 2015. Linkage disequilibrium and inversion-typing of the Drosophila melanogaster Genome Reference Panel. Genes Genomes Genet. 5:1695-1701.
Huang, W., A. Massouras, Y. Inoue, J. Peiffer, M. Ramia, A. M. Tarone, L. Turlapati, T. Zichner, D. Zhu, R. F. Lyman, et al. 2014. Natural variation in genome architecture among 205 Drosophila melanogaster Genetic Reference Panel lines. Genome Res. 24:1193-1208.
Jakobs, R., T. D. Gariepy, and B. J. Sinclair. 2015. Adult plasticity of cold tolerance in a continental-temperate population of Drosophila suzukii. J. Insect Physiol. 79:1-9.
Kellermann, V., V. Loeschcke, A. A. Hoffmann, T. N. Kristensen, C. Fløjgaard, J. R. David, J. Svenning, and J. Overgaard. 2012a. Phylogenetic constraints in key functional traits behind species’ climate niches: patterns of desiccation and cold resistance across 95 Drosophila species. Evolution 66:3377-3389.
Kellermann, V., J. Overgaard, A. A. Hoffmann, C. Flojgaard, J.-C. Svenning, and V. Loeschcke. 2012b. Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically. Proc. Natl. Acad. Sci. 109:16228-16233.
Koštál, V., and M. Tollarová-Borovanská. 2009. The 70 kDa heat shock protein assists during the repair of chilling injury in the insect, Pyrrhocoris apterus. PLoS One 4. https://doi.org/10.1371/journal.pone.0004546.
Koštál, V., R. Grgac, and J. Korbelová. 2019. Delayed mortality and sublethal effects of cold stress in Drosophila melanogaster. J. Insect Physiol. 113:24-32.
Lee, R. E., and D. L. Denlinger. 1991. Insects at low temperature. Springer, Boston, MA.
Mackay, T. F. C., S. Richards, E.A. Stone, A. Barbadilla, J. F. Ayroles, D. Zhu, S. Casillas, Y. Han, M. M. Magwire, J. M. Cridland, et al. 2012. The Drosophila melanogaster Genetic Reference Panel. Nature 482:173-178.
MacMillan, H. A., and B. J. Sinclair. 2011. Mechanisms underlying insect chill-coma. J. Insect Physiol. 57:12-20.
MacMillan, H. A., J. L. Andersen, S. A. Davies, and J. Overgaard. 2015. The capacity to maintain ion and water homeostasis underlies interspecific variation in Drosophila cold tolerance. Sci. Rep. 5:1-11.
MacMillan, H. A., J. M. Knee, A. B. Dennis, H. Udaka, K. E. Marshall, T. J. S. Merritt, and B. J. Sinclair. 2016. Cold acclimation wholly reorganizes the Drosophila melanogaster transcriptome and metabolome. Sci. Rep. 6. https://doi.org/10.1038/srep28999.
Marshall, K. E., and B. J. Sinclair. 2010. Repeated stress exposure results in a survival-reproduction trade-off in Drosophila melanogaster. Proc. R. Soc. B 277:963-969.
Newman, C. E., J. Toxopeus, H. Udaka, S. Ahn, D. M. Martynowicz, S. P. Graether, B. J. Sinclair, and A. Percival-Smith. 2017. CRISPR-induced null alleles show that Frost protects Drosophila melanogaster reproduction after cold exposure. J. Exp. Biol. 220:3344-3354.
Nguyen, A. D., N. J. Gotelli, and S. H. Cahan. 2016. The evolution of heat shock protein sequences, cis-regulatory elements, and expression profiles in the eusocial Hymenoptera. BMC Evol. Biol. 16:1-13.
Ørsted, M., A. Malmendal, J. Muñoz, and T. N. Kristensen. 2018. Metabolic and functional phenotypic profiling of Drosophila melanogaster reveals reduced sex differentiation under stressful environmental conditions. Biol. J. Linn. Soc. 123:155-162.
Ørsted, M., A. A. Hoffmann, P. D. Rohde, P. Sørensen, and T. N. Kristensen. 2019. Strong impact of thermal environment on the quantitative genetic basis of a key stress tolerance trait. Heredity 122:315-325.
Overgaard, J., and H. A. MacMillan. 2017. The integrative physiology of insect chill tolerance. Annu. Rev. Physiol. 79:187-208.
Parker, D. J., L. Vesala, M. G. Ritchie, A. Laiho, A. Hoikkala, and M. Kankare. 2015. How consistent are the transcriptome changes associated with cold acclimation in two species of the Drosophila virilis group? Heredity 115:13-21.
Pfennig, D. W., M.a. Wund, E. C. Snell-Rood, T. Cruickshank, C. D. Schlichting, and A. P. Moczek. 2010. Phenotypic plasticity's impacts on diversification and speciation. Trends Ecol. Evol. 25:459-467.
Pool, J. E., D. T. Braun, and J. B. Lack. 2017. Parallel evolution of cold tolerance within Drosophila melanogaster. Mol. Biol. Evol. 34:msw232.
RStudio Team. 2015. RStudio: integrated development for R. RStudio, Boston, MA. Available at http://www.rstudio.com/ (last accessed 05/01/2020).
Ransberry, V. E., H. A. MacMillan, and B. J. Sinclair. 2011. The relationship between chill-coma onset and recovery at the extremes of the thermal window of Drosophila melanogaster. Physiol. Biochem. Zool. 84:553-559.
Renault, D. 2011. Long-term after-effects of cold exposure in adult Alphitobius diaperinus (Tenebrionidae): the need to link survival ability with subsequent reproductive success. Ecol. Entomol. 36:36-42.
Rinehart, J. P., G. D. Yocum, and D. L. Denlinger. 2000. Thermotolerance and rapid cold hardening ameliorate the negative effects of brief exposures to high or low temperatures on fecundity in the flesh fly, Sarcophaga crassipalpis. Physiol. Entomol. 25:330-336.
Rinehart, J. P., A. Li, G. D. Yocum, R. M. Robich, S. A. L. Hayward, and D. L. Denlinger. 2007. Up-regulation of heat shock proteins is essential for cold survival during insect diapause. Proc. Natl. Acad. Sci. USA 104:11130-11137.
Roff, D. A. 1997. Evolutionary quantitative genetics. Chapman and Hall, New York, p. 493.
Rukke, B. A., M. Hage, and A. Aak. 2017. Mortality, fecundity and development among bed bugs (Cimex lectularius) exposed to prolonged, intermediate cold stress. Pest Manag. Sci. 73:838-843.
Sakai, A. K., F. W. Allendorf, J. S. Holt, M. Lodge, J. Molofsky, K. A. With, R. J. Cabin, J. E. Cohen, C. Norman, D. E. Mccauley, et al. 2001. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32:305-332.
Schmid, M., R. Dallo, and F. Guillaume. 2019. Species’ range dynamics affect the evolution of spatial variation in plasticity under environmental change. Am. Nat. 193:798-813.
Shreve, S. M., J. D. Kelty, and R. E. Lee. 2004. Preservation of reproductive behaviors during modest cooling: rapid cold-hardening fine-tunes organismal response. J. Exp. Biol. 207:1797-1802.
Sinclair, B. J., A. Addo-Bediako, and S. L. Chown. 2003. Climatic variability and the evolution of insect freeze tolerance. Biol. Rev. Camb. Philos. Soc. 78:181-195.
Sinclair, B. J., A. G. Gibbs, and S. P. Roberts. 2007. Gene transcription during exposure to, and recovery from, cold and desiccation stress in Drosophila melanogaster. Insect Mol. Biol. 16:435-443.
Sinclair, B. J., L. E. Coello Alvarado, and L. V. Ferguson. 2015. An invitation to measure insect cold tolerance: methods, approaches, and workflow. J. Therm. Biol. 53:180-197.
Singh, K., and N. G. Prasad. 2016. Evolution of pre- and post-copulatory traits in male Drosophila melanogaster as a correlated response to selection for resistance to cold stress. J. Insect Physiol. 91-92:26-33.
Slatyer, R. A., and S. D. Schoville. 2016. Physiological limits along an elevational gradient in a radiation of montane ground beetles. PLoS One 11:1-19.
Sodini, S. M., K. E. Kemper, N. R. Wray, and M. Trzaskowski. 2018. Comparison of genotypic and phenotypic correlations: Cheverud's conjecture in humans. Genetics 209:941-948.
Sørensen, J. G., T. N. Kristensen, and V. Loeschcke. 2003. The evolutionary and ecological role of heat shock proteins. Ecol. Lett. 6:1025-1037.
Sørensen, J. G., L. H. Heckmann, and M. Holmstrup. 2010. Temporal gene expression profiles in a palaearctic springtail as induced by desiccation, cold exposure and during recovery. Funct. Ecol. 24:838-846.
Štětina, T., V. Koštál, and J. Korbelová. 2015. The role of inducible Hsp70, and other heat shock proteins, in adaptive complex of cold tolerance of the fruit fly (Drosophila melanogaster). PLoS One 10:1-22.
Styga, J. M., T. M. Houslay, A. J. Wilson, and R. L. Earley. 2019. Development of G: a test in an amphibious fish. Heredity 122:696-708.
Teets, N. M., and D. L. Denlinger. 2013. Physiological mechanisms of seasonal and rapid cold-hardening in insects. Physiol. Entomol. 38:105-116.
Teets, N. M., and D. A. Hahn. 2018. Genetic variation in the shape of cold-survival curves in a single fly population suggests potential for selection from climate variability. J. Evol. Biol. 31:543-555.
Teets, N. M., J. T. Peyton, G. J. Ragland, H. Colinet, D. Renault, D. A. Hahn, and D. L. Denlinger. 2012. Combined transcriptomic and metabolomic approach uncovers molecular mechanisms of cold tolerance in a temperate flesh fly. Physiol Genomics 44:764-777.
Teets, N. M., S. X. Yi, R. E. Lee, and D. L. Denlinger. 2013. Calcium signaling mediates cold sensing in insect tissues. Proc. Natl. Acad. Sci. USA 110:9154-9159.
Teets, N. M., J. D. Gantz, and Y. Kawarasaki. 2020. Rapid cold hardening: ecological relevance, physiological mechanisms and new perspectives. J. Exp. Biol. 223:jeb203448.
Udaka, H., A. Percival-Smith, and B. J. Sinclair. 2013. Increased abundance of Frost mRNA during recovery from cold stress is not essential for cold tolerance in adult Drosophila melanogaster. Insect Mol. Biol. 22:541-550.
Wang, G., and M. E. Dillon. 2014. Recent geographic convergence in diurnal and annual temperature cycling flattens global thermal profiles. Nat. Clim. Chang. 4:988-992.
Yi, S.-X., J. D. Gantz, and R. E. Lee. 2017. Desiccation enhances rapid cold-hardening in the flesh fly Sarcophaga bullata: evidence for cross tolerance between rapid physiological responses. J. Comp. Physiol. B 187:79-86.
Youngsteadt, E., A. F. Ernst, R. R. Dunn, and S. D. Frank. 2017. Responses of arthropod populations to warming depend on latitude: evidence from urban heat islands. Glob. Chang. Biol. 23:1436-1447.