Automatic screening method for atrial fibrillation based on lossy compression of the electrocardiogram signal.
Journal
Physiological measurement
ISSN: 1361-6579
Titre abrégé: Physiol Meas
Pays: England
ID NLM: 9306921
Informations de publication
Date de publication:
21 08 2020
21 08 2020
Historique:
pubmed:
29
5
2020
medline:
21
7
2021
entrez:
29
5
2020
Statut:
epublish
Résumé
Compressed sensing (CS) is a low-complexity compression technology that has recently been proposed. It can be applied to long-term electrocardiogram (ECG) monitoring using wearable devices. In this study, an automatic screening method for atrial fibrillation (AF) based on lossy compression of the electrocardiogram signal is proposed. The proposed method combines the CS with the convolutional neural network (CNN). The sparse binary sensing matrix is first used to project the raw ECG signal randomly, transforming the raw ECG data from high-dimensional space to low-dimensional space to complete compression, and then using CNN to classify the compressed ECG signal involving AF. Our proposed model is validated on the MIT-BIH atrial fibrillation database. The experimental results show that the model only needs about 1 s to complete the 24 h ECG recording of AF, which is 3.41%, 69.84% and 67.56% less than the time required by AlexNet, VGGNet and GoogLeNet, respectively. Under different compression ratios of 10% to 90%, the maximum and minimum F1 scores reach 96.25% and 88.17%, respectively. The CS-CNN (compressed sensing convolutional neural network) model has high computational efficiency while ensuring prediction accuracy, and is a promising method for AF screening in wearable application scenarios.
Identifiants
pubmed: 32464608
doi: 10.1088/1361-6579/ab979f
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM