Thallium Toxicity in Caenorhabditis elegans: Involvement of the SKN-1 Pathway and Protection by S-Allylcysteine.
Animals
Animals, Genetically Modified
Antioxidants
/ pharmacology
Body Size
/ drug effects
Caenorhabditis elegans
/ drug effects
Caenorhabditis elegans Proteins
/ drug effects
Cysteine
/ analogs & derivatives
DNA-Binding Proteins
/ drug effects
Gene Knockout Techniques
Glutathione Transferase
/ drug effects
Longevity
/ drug effects
Organometallic Compounds
/ toxicity
Transcription Factors
/ drug effects
Longevity
Nematodes
Oxidative damage
SKN-1
Survival
Thallium toxicity
Journal
Neurotoxicity research
ISSN: 1476-3524
Titre abrégé: Neurotox Res
Pays: United States
ID NLM: 100929017
Informations de publication
Date de publication:
Aug 2020
Aug 2020
Historique:
received:
17
01
2020
accepted:
24
04
2020
revised:
21
04
2020
pubmed:
30
5
2020
medline:
16
6
2021
entrez:
30
5
2020
Statut:
ppublish
Résumé
Monovalent thallium (Tl
Identifiants
pubmed: 32468422
doi: 10.1007/s12640-020-00220-1
pii: 10.1007/s12640-020-00220-1
doi:
Substances chimiques
Antioxidants
0
Caenorhabditis elegans Proteins
0
DNA-Binding Proteins
0
Organometallic Compounds
0
Transcription Factors
0
skn-1 protein, C elegans
148733-36-2
S-allylcysteine
81R3X99M15
Glutathione Transferase
EC 2.5.1.18
Cysteine
K848JZ4886
thallium acetate
Q2901889VM
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
287-298Subventions
Organisme : NIEHS NIH HHS
ID : R01ES03771
Pays : United States
Organisme : NIEHS NIH HHS
ID : R01ES10563
Pays : United States
Organisme : NIEHS NIH HHS
ID : R01ES020852
Pays : United States
Organisme : Agencia Nacional de Promoción Científica y Tecnológica
ID : PICT2017-1861
Organisme : NIEHS NIH HHS
ID : R01ES03771
Pays : United States
Organisme : NIEHS NIH HHS
ID : R01ES10563
Pays : United States
Organisme : NIEHS NIH HHS
ID : R01ES020852
Pays : United States
Références
Amrit FR, Ratnappan R, Keith SA, Ghazi A (2014) The C. elegans lifespan assay toolkit. Methods 68:465–475
pubmed: 24727064
An JH, Blackwell TK (2003) SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Dev 17:1882–1893
pubmed: 12869585
pmcid: 196237
Aschner JL, Aschner M (2007) Methylmercury neurotoxicity: exploring potential novel targets. Open Toxicol J 1:1–9
pubmed: 31178939
pmcid: 6555406
Belowitz R, Leonard EM, O'Donnell MJ (2014) Effects of exposure to high concentrations of waterborne Tl on K and Tl concentrations in Chironomus riparius larvae. Comp Biochem Physiol C Toxicol Pharmacol 166:59–64
pubmed: 25046737
Blackwell TK, Steinbaugh MJ, Hourihan JM, Ewald CY, Isik M (2015) SKN-1/Nrf, stress responses, and aging in Caenorhabditis elegans. Free Radic Biol Med 88(Pt B):290–301
pubmed: 26232625
pmcid: 4809198
Blain R, Kazantzis G (2015) Thallium. In: Nordberg GF, Fowler BA, Nordberg M (eds) Handbook on the Toxicology of Metals. Volume II: Specific Metals. Academic Press, Elsevier, Amsterdam 1229–1240 pp
Boonpeng S, Siripongvutikorn S, Sae-Wong C, Sutthirak P (2014) The antioxidant and anti-cadmium toxicity properties of garlic extracts. Food Sci Nutr 2:792–801
pubmed: 25493198
pmcid: 4256585
Bunni MA, Douglas KT (1984) Arylthallium(III) reagents for protein modification. Inhibition of lactate dehydrogenase from various sources by o-carboxyphenylthallium(III) bistrifluoroacetate. Biochem J 217:383–390
pubmed: 6696737
pmcid: 1153228
Calabrese EJ, Baldwin LA (2001) U-shaped dose-responses in biology, toxicology, and public health. Annu Rev Public Health 22:15–33
pubmed: 11274508
Chen M, Wang F, Cao JJ, Han X, Lu WW, Ji X, Chen WH, Lu WQ, Liu AL (2019) (−)-Epigallocatechin-3-gallate attenuates the toxicity of methylmercury in Caenorhabditis elegans by activating SKN-1. Chem Biol Interact 307:125–135
pubmed: 31047916
Colín-González AL, Ali SF, Túnez I, Santamaría A (2015) On the antioxidant, neuroprotective and anti-inflammatory properties of S-allyl cysteine: an update. Neurochem Int 89:83–91
pubmed: 26122973
Colonnello A, Aguilera-Portillo G, Rubio-López LC, Robles-Bañuelos B, Rangel-López E, Cortez-Núñez S, Evaristo-Priego Y, Silva-Palacios A, Galván-Arzate S, García-Contreras R, Túnez I, Chen P, Aschner M, Santamaría A (2019) Comparing the neuroprotective effects of caffeic acid in rat cortical slices and Caenorhabditis elegans: involvement of Nrf2 and SKN-1 signaling pathways. Neurotox Res In Press 37:326–337. https://doi.org/10.1007/s12640-019-00133-8
doi: 10.1007/s12640-019-00133-8
Cuadrado A, Rojo AI, Wells G, Hayes JD, Cousin SP, Rumsey WL, Attucks OC, Franklin S, Levonen AL, Kensler TW, Dinkova-Kostova AT (2019) Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat Rev Drug Discov 18:295–317
pubmed: 30610225
Detienne G, Van de Walle P, De Haes W, Schoofs L, Temmerman L (2016) SKN-1-independent transcriptional activation of glutathione S-transferase 4 (GST-4) by EGF signaling. Worm 5:e1230585
pubmed: 28090393
pmcid: 5190145
Elmazoglu Z, Yar Saglam AS, Sonmez C, Karasu C (2020) Luteolin protects microglia against rotenone-induced toxicity in a hormetic manner through targeting oxidative stress response, genes associated with Parkinson's disease and inflammatory pathways. Drug Chem Toxicol 43:96–103
pubmed: 30207190
Eskandari MR, Mashayekhi V, Aslani M, Hosseini MJ (2015) Toxicity of thallium on isolated rat liver mitochondria: the role of oxidative stress and MPT pore opening. Environ Toxicol 30:232–241
pubmed: 23996974
Favari L, Mourelle M (1985) Thallium replaces potassium in activation of the (Na
pubmed: 2985680
Flora SJ (2009) Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxidative Med Cell Longev 2:191–206
Galván-Arzate S, Santamaría A (1998) Thallium toxicity. Toxicol Lett 99:1–13
pubmed: 9801025
Galván-Arzate S, Pedraza-Chaverrí J, Medina-Campos ON, Maldonado PD, Vázquez-Román B, Ríos C, Santamaría A (2005) Delayed effects of thallium in the rat brain: regional changes in lipid peroxidation and behavioral markers, but moderate alterations in antioxidants, after a single administration. Food Chem Toxicol 43:1037–1045
pubmed: 15833379
García E, Santana-Martínez R, Silva-Islas CA, Colín-González AL, Galván-Arzate S, Heras Y, Maldonado PD, Sotelo J, Santamaría A (2014) S-Allyl cysteine protects against MPTP-induced striatal and nigral oxidative neurotoxicity in mice: participation of Nrf2. Free Radic Res 48:159–167
pubmed: 24147739
Hanzel CE, Verstraeten SV (2006) Thallium induces hydrogen peroxide generation by impairing mitochondrial function. Toxicol Appl Pharmacol 216:485–492
pubmed: 16934846
Hanzel CE, Verstraeten SV (2009) Tl (I) and Tl (III) activate both mitochondrial and extrinsic pathways of apoptosis in rat pheochromocytoma (PC12) cells. Toxicol Appl Pharmacol 236:59–70
pubmed: 19371624
Harrington AJ, Hamamichi S, Caldwell GA, Caldwell KA (2010) C. elegans as a model organism to investigate molecular pathways involved with Parkinson’s disease. Dev Dyn 239:1282–1295
pubmed: 20108318
Hassler CS, Chafin RD, Klinger MB, Twiss MR (2007) Application of the biotic ligand model to explain potassium interaction with thallium uptake and toxicity to plankton. Environ Toxicol Chem 26:1139–1145
pubmed: 17571678
Hauser-Davis RA, Comarú MW, Lopes RM (2020) Metallothionein determination can be applied to learn about aquatic metal pollution and oxidative stress detoxification mechanisms through problem-based learning. Biochem Mol Biol Educ doi. https://doi.org/10.1002/bmb.21342
Ke T, Aschner M (2019) Bacteria affect Caenorhabditis elegans responses to MeHg toxicity. Neurotoxicology 75:129–135
pubmed: 31542475
Khan MJ, Mukhtiar M, Qureshi MM, Jan SU, Ullah I, Hussain A, Khan MF, Gul R, Shahwani NA, Rabbani I (2018) Spectrophotometric investigation of glutathione modulation by thallium chloride in aqueous medium. Pakistan J Pharm Sci 31:1463–1467
Kim B, Emmons SW (2017) Multiple conserved cell adhesion protein interactions mediate neural wiring of a sensory circuit in C. elegans. Elife 6:e29257
pubmed: 28901288
pmcid: 5619950
Kim J-M, Chang HJ, Kim W-K, Chang N, Chun HS (2006) Structure-activity relationship of neuroprotective and reactive oxygen species scavenging activities for allium organosulfur compounds. J Agric Food Chem 54:6547–6553
pubmed: 16939308
Korotkov SM (2009) Effects of Tl
pubmed: 19626431
Korotkov SM, Emelyanova LV, Konovalova SA, Brailovskaya IV (2015) Tl
pubmed: 25910914
Korotkov SM, Konovalova SA, Brailovskaya IV, Saris NE (2016) To involvement the conformation of the adenine nucleotide translocase in opening the Tl
pubmed: 26835787
Kotlar I, Colonnello A, Aguilera-González MF, Avila DS, de Lima ME, García-Contreras R, Ortíz-Plata A, Soares FAA, Aschner M, Santamaría A (2018) Comparison of the toxic effects of quinolinic acid and 3-nitropropionic acid in C. elegans: involvement of the SKN-1 pathway. Neurotox Res 33:259–267
pubmed: 28822104
Lin G, Sun Y, Long J, Sui X, Yang J, Wang Q, Wang S, He H, Luo Y, Qiu Z, Wang Y (2020) Involvement of the Nrf2-Keap1 signaling pathway in protection against thallium-induced oxidative stress and mitochondrial dysfunction in primary hippocampal neurons. Toxicol Lett 319:66–73
pubmed: 31726083
López-Diazguerrero NE, González Puertos VY, Hernández-Bautista RJ, Alarcón-Aguilar A, Luna-López A, Königsberg Fainstein M (2013) Hormesis: what doesn’t kill you makes you stronger. Gac Med Mex 149:438–447
pubmed: 23999636
Lu C, Svoboda KR, Lenz KA, Pattison C, Ma H (2018) Toxicity interactions between manganese (Mn) and lead (Pb) or cadmium (Cd) in a model organism the nematode C. elegans. Environ Sci Pollut Res Int 25:15378–15389
pubmed: 29564703
Martinez-Finley EJ, Caito S, Slaughter JC, Aschner M (2013) The role of skn-1 in methylmercury-induced latent dopaminergic neurodegeneration. Neurochem Res 38:2650–2660
pubmed: 24194349
Mattson MP (2008) Hormesis defined. Ageing Res Rev 7:1–7
pubmed: 18162444
Maya-López M, Mireles-García MV, Ramírez-Toledo M, Colín-González AL, Galván-Arzate S, Túnez I, Santamaría A (2018) Thallium-induced toxicity in rat brain crude synaptosomal/mitochondrial fractions is sensitive to anti-excitatory and antioxidant agents. Neurotox Res 33:634–640
pubmed: 29313218
McVey M (2010) Strategies for DNA interstrand crosslink repair: insights from worms, flies, frogs, and slime molds. Environ Mol Mutagen 51:646–658
pubmed: 20143343
Melnick RL, Monti LG, Motzkin SM (1976) Uncoupling of mitochondrial oxidative phosphorylation by thallium. Biochem Biophys Res Commun 69:68–73
pubmed: 130908
Mulkey JP, Oehme FW (1993) A review of thallium toxicity. Vet Hum Toxicol 35:445–453
pubmed: 8249271
Nagashima T, Oami E, Kutsuna N, Ishiura S, Suo S (2016) Dopamine regulates body size in Caenorhabditis elegans. Dev Biol 412:128–138
pubmed: 26921458
Ogawa T, Kodera Y, Hirata D, Blackwell TK, Mizunuma M (2016) Natural thioallyl compounds increase oxidative stress resistance and lifespan in Caenorhabditis elegans by modulating SKN-1/Nrf. Sci Rep 6:21611
pubmed: 26899496
pmcid: 4761942
Osorio-Rico L, Villeda-Hernández J, Santamaría A, Königsberg M, Galván-Arzate S (2015) The N-methyl-D-aspartate receptor antagonist MK-801 prevents thallium-induced behavioral and biochemical alterations in the rat brain. Int J Toxicol 34:505–513
pubmed: 26350230
Osorio-Rico L, Santamaria A, Galván-Arzate S (2017) Thallium toxicity: general issues, neurological symptoms, and neurotoxic mechanisms. Adv Neurobiol 18:345–353
pubmed: 28889276
Pedraza-Chaverrí J, Gil-Ortiz M, Albarrán G, Barbachano-Esparza L, Menjívar M, Medina-Campos ON (2004) Garlic's ability to prevent in vitro Cu
pubmed: 15341661
pmcid: 519022
Pino MTL, Marotte C, Verstraeten SV (2017) Epidermal growth factor prevents thallium(I)- and thallium(III)-mediated rat pheochromocytoma (PC12) cell apoptosis. Arch Toxicol 91:1157–1174
pubmed: 27412756
Pourahmad J, Eskandari MR, Daraei B (2010) A comparison of hepatocyte cytotoxic mechanisms for thallium (I) and thallium (III). Environ Toxicol 25:456–467
pubmed: 20549620
Queirós L, Pereira JL, Gonçalves FJM, Pacheco M, Aschner M, Pereira P (2019) Caenorhabditis elegans as a tool for environmental risk assessment: emerging and promising applications for a “nobelized worm”. Crit Rev Toxicol 49:411–429
pubmed: 31268799
Rickwood CJ, King M, Huntsman-Mapila P (2015) Assessing the fate and toxicity of thallium I and thallium III to three aquatic organisms. Ecotoxicol Environ Saf 115:300–308
pubmed: 25659481
Ríos C, Galván-Arzate S, Tapia R (1989) Brain regional thallium distribution in rats acutely intoxicated with Tl
pubmed: 2742499
Schetinger MRC, Peres TV, Arantes LP, Carvalho F, Dressler V, Heidrich G, Bowman AB, Aschner M (2019) Combined exposure to methylmercury and manganese during L1 larval stage causes motor dysfunction, cholinergic and monoaminergic up-regulation and oxidative stress in L4 Caenorhabditis elegans. Toxicology 411:154–162
pubmed: 30336192
Shashikumar S, Pradeep H, Chinnu S, Rajini PS, Rajanikant GK (2015) Alpha-linolenic acid suppresses dopaminergic neurodegeneration induced by 6-OHDA in C. elegans. Physiol Behav 151:563–569
pubmed: 26300470
Shi H, Jing X, Wei X, Perez RG, Ren M, Zhang X, Lou H (2015) S-allyl cysteine activates the Nrf2-dependent antioxidant response and protects neurons against ischemic injury in vitro and in vivo. J Neurochem 133:298–308
pubmed: 25393425
Soares MV, Puntel RL, Ávila DS (2018) Resveratrol attenuates iron-induced toxicity in a chronic post-treatment paradigm in Caenorhabditis elegans. Free Radic Res 52:939–951
pubmed: 29991289
Tang B, Tong P, Xue KS, Williams PL, Wang JS, Tang L (2019) High-throughput assessment of toxic effects of metal mixtures of cadmium(Cd), lead(Pb), and manganese(Mn) in nematode Caenorhabditis elegans. Chemosphere 234:232–241
pubmed: 31220657
Tao Z, Gameiro A, Grewer C (2008) Thallium ions can replace both sodium and potassium ions in the glutamate transporter excitatory amino acid carrier 1. Biochemistry 47:12923–12930
pubmed: 18986164
pmcid: 2651767
Tatsi K, Turner A, Handy RD, Shaw BJ (2015) The acute toxicity of thallium to freshwater organisms: implications for risk assessment. Sci Total Environ 536:382–390
pubmed: 26225743
Turner A, Furniss O (2012) An evaluation of the toxicity and bioaccumulation of thallium in the coastal marine environment using the macroalga, Ulva lactuca. Mar Pollut Bull 64:2720–2724
pubmed: 23117203
Twining BS, Twiss MR, Fisher NS (2003) Oxidation of thallium by freshwater plankton communities. Environ Sci Technol 37:2720–2726
pubmed: 12854711
Ushiama S, Ishimaru Y, Narukawa M, Yoshioka M, Kozuka C, Watanabe N, Tsunoda M, Osakabe N, Asakura T, Masuzaki H, Abe K (2016) Catecholamines facilitate fuel expenditure and protect against obesity via a novel network of the gut-brain axis in transcription factor skn-1-deficient mice. EBioMedicine 8:60–71
pubmed: 27428419
pmcid: 4919597
Verstraeten SV (2006) Relationship between thallium (I)-mediated plasma membrane fluidification and cell oxidants production in Jurkat T cells. Toxicology 222:95–102
pubmed: 16517040
Villaverde MS, Hanzel CE, Verstraeten SV (2004) In vitro interactions of thallium with components of glutathione-dependent antioxidant defence system. Free Radic Res 38:977–984
pubmed: 15621716