BMPER is upregulated in obesity and seems to have a role in pericardial adipose stem cells.
Adipocytes
/ metabolism
Adipose Tissue
/ metabolism
Animals
Apoptosis
/ genetics
Carrier Proteins
/ metabolism
Cell Differentiation
/ genetics
Cells, Cultured
Diet, High-Fat
/ adverse effects
Endothelial Cells
/ metabolism
Fatty Acids, Nonesterified
/ metabolism
Female
Intra-Abdominal Fat
/ metabolism
Mice
Mice, Inbred C57BL
Mice, Obese
/ genetics
Obesity
/ genetics
Pericardium
/ metabolism
Signal Transduction
/ genetics
Stem Cells
/ metabolism
Up-Regulation
/ genetics
ASC
BMPER
cardiovascular disease
obesity
pericardial adipose tissue
Journal
Journal of cellular physiology
ISSN: 1097-4652
Titre abrégé: J Cell Physiol
Pays: United States
ID NLM: 0050222
Informations de publication
Date de publication:
01 2021
01 2021
Historique:
received:
07
02
2020
revised:
17
05
2020
accepted:
18
05
2020
pubmed:
30
5
2020
medline:
31
8
2021
entrez:
30
5
2020
Statut:
ppublish
Résumé
Pericardial adipose tissue (PAT), a visceral fat depot enveloping the heart, is an active endocrine organ and a source of free fatty acids and inflammatory cytokines. As in other fat adult tissues, PAT contains a population of adipose stem cells; however, whether these cells and/or their environment play a role in physiopathology is unknown. We analyzed several stem cell-related properties of pericardial adipose stem cells (PSCs) isolated from obese and ex-obese mice. We also performed RNA-sequencing to profile the transcriptional landscape of PSCs isolated from the different diet regimens. Finally, we tested whether these alterations impacted on the properties of cardiac mesoangioblasts isolated from the same mice. We found functional differences between PSCs depending on their source: specifically, PSCs from obese PSC (oPSC) and ex-obese PSC (dPSC) mice showed alterations in apoptosis and migratory capacity when compared with lean, control PSCs, with increased apoptosis in oPSCs and blunted migratory capacity in oPSCs and dPSCs. This was accompanied by different gene expression profiles across the cell types, where we identified some genes altered in obese conditions, such as BMP endothelial cell precursor-derived regulator (BMPER), an important regulator of BMP-related signaling pathways for endothelial cell function. The importance of BMPER in PSCs was confirmed by loss- and gain-of-function studies. Finally, we found an altered production of BMPER and some important chemokines in cardiac mesoangioblasts in obese conditions. Our findings point to BMPER as a potential new regulator of PSC function and suggest that its dysregulation could be associated with obesity and may impact on cardiac cells.
Substances chimiques
Carrier Proteins
0
Fatty Acids, Nonesterified
0
crossveinless 2 protein, mouse
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
132-145Informations de copyright
© 2020 Wiley Periodicals LLC.
Références
Aydin, H., Toprak, A., Deyneli, O., Yazici, D., Tarcin, O., Sancak, S., … Akalin, S. (2010). Epicardial fat tissue thickness correlates with endothelial dysfunction and other cardiovascular risk factors in patients with metabolic syndrome. Metabolic Syndrome and Related Disorders, 8(3), 229-234. https://doi.org/10.1089/met.2009.0080
Ball, S. G., Shuttleworth, C. A., & Kielty, C. M. (2007). Mesenchymal stem cells and neovascularization: Role of platelet-derived growth factor receptors. Journal of Cellular and Molecular Medicine, 11(5), 1012-1030. https://doi.org/10.1111/j.1582-4934.2007.00120.x
Bernal, A., Fernandez, M., Perez, L. M., San Martin, N., & Galvez, B. G. (2012). Method for obtaining committed adult mesenchymal precursors from skin and lung tissue. PLoS One, 7(12), e53215. https://doi.org/10.1371/journal.pone.0053215
Cawthorn, W. P., & Sethi, J. K. (2008). TNF-alpha and adipocyte biology. FEBS Letters, 582(1), 117-131. https://doi.org/10.1016/j.febslet.2007.11.051
Coisne, A., Ninni, S., Ortmans, S., Davin, L., Kasprzak, K., Longere, B., … Pontana, F. (2018). Epicardial fat amount is associated with the magnitude of left ventricular remodeling in aortic stenosis. The International Journal of Cardiovascular Imaging, 35, 267-273. https://doi.org/10.1007/s10554-018-1477-z
Cherian, S., Lopaschuk, G. D., & Carvalho, E. (2012). Cellular cross-talk between epicardial adipose tissue and myocardium in relation to the pathogenesis of cardiovascular disease. American Journal of Physiology, Endocrinology and Metabolism, 303(8), E937-E949. https://doi.org/10.1152/ajpendo.00061.2012
Esser, J. S., Saretzki, E., Pankratz, F., Engert, B., Grundmann, S., Bode, C., … Zhou, Q. (2017). Bone morphogenetic protein 4 regulates microRNAs miR-494 and miR-126-5p in control of endothelial cell function in angiogenesis. Thrombosis and Haemostasis, 117(4), 734-749. https://doi.org/10.1160/TH16-08-0643
Ferland-McCollough, D., Maselli, D., Spinetti, G., Sambataro, M., Sullivan, N., Blom, A., & Madeddu, P. (2018). MCP-1 feedback loop between adipocytes and mesenchymal stromal cells causes fat accumulation and contributes to hematopoietic stem cell rarefaction in the bone marrow of patients with diabetes. Diabetes, 67(7), 1380-1394. https://doi.org/10.2337/db18-0044
Galvez, B. G., San Martin, N., & Rodriguez, C. (2009). TNF-alpha is required for the attraction of mesenchymal precursors to white adipose tissue in Ob/Ob mice. PlosOne, 4, e4444.
Galvez, B. G., Sampaolesi, M., Barbuti, A., Crespi, A., Covarello, D., Brunelli, S., … Cossu, G. (2008). Cardiac mesoangioblasts are committed, self-renewable progenitors, associated with small vessels of juvenile mouse ventricle. Cell Death and Differentiation, 15(9), 1417-1428. https://doi.org/10.1038/cdd.2008.75
Garcia de Vinuesa, A., Abdelilah-Seyfried, S., Knaus, P., Zwijsen, A., & Bailly, S. (2016). BMP signaling in vascular biology and dysfunction. Cytokine and Growth Factor Reviews, 27, 65-79. https://doi.org/10.1016/j.cytogfr.2015.12.005
González, N., Moreno-Villegas, Z., González-Bris, A., Egido, J., & Lorenzo, Ó. (2017). Regulation of visceral and epicardial adipose tissue for preventing cardiovascular injuries associated to obesity and diabetes. Cardiovascular Diabetology, 16(1), 44. https://doi.org/10.1186/s12933-017-0528-4
Grgurevic, L., Christensen, G. L., Schulz, T. J., & Vukicevic, S. (2016). Bone morphogenetic proteins in inflammation, glucose homeostasis and adipose tissue energy metabolism. Cytokine and Growth Factor Reviews, 27, 105-118. https://doi.org/10.1016/j.cytogfr.2015.12.009
Helbing, T., Wiltgen, G., Hornstein, A., Brauers, E. Z., Arnold, L., Bauer, A., … Moser, M. (2017). Bone morphogenetic protein-modulator BMPER regulates endothelial barrier function. Inflammation, 40(2), 442-453. https://doi.org/10.1007/s10753-016-0490-4
Hua, J., He, Z. G., Qian, D. H., Lin, S. P., Gong, J., Meng, H. B., … Song, Z. S. (2014). Angiopoietin-1 gene-modified human mesenchymal stem cells promote angiogenesis and reduce acute pancreatitis in rats. International Journal of Clinical and Experimental Pathology, 7(7), 3580-3595.
Hughes, C. E., & Nibbs, R. J. B. (2018). A guide to chemokines and their receptors. FEBS Journal, 285, 2944-2971. https://doi.org/10.1111/febs.14466
Iacobellis, G., & Barbaro, G. (2008). The double role of epicardial adipose tissue as pro- and anti-inflammatory organ. Hormone and Metabolic Research = Hormon- und Stoffwechselforschung = Hormones et métabolisme, 40(7), 442-445. https://doi.org/10.1055/s-2008-1062724
Iacobellis, G., Gao, Y. J., & Sharma, A. M. (2008). Do cardiac and perivascular adipose tissue play a role in atherosclerosis? Current Diabetes Reports, 8(1), 20-24. https://doi.org/10.1007/s11892-008-0005-2
Iacobellis, G., & Malavazos, A. E. (2010). Pericardial adipose tissue, atherosclerosis, and cardiovascular disease risk factors: The Jackson Heart Study: Comment on Liu et Al. Diabetes Care, 33(9), e127. https://doi.org/10.2337/dc10-0904
Iacobellis, G., & Willens, H. J. (2009). Echocardiographic epicardial fat: A review of research and clinical applications. Journal of the American Society of Echocardiography, 22(12), 1311-1319. https://doi.org/10.1016/j.echo.2009.10.013
van Iterson, M., Boer, J. M., & Menezes, R. X. (2010). Filtering, FDR, and power. BMC Bioinformatics, 11, 450. https://doi.org/10.1186/1471-2105-11-450
Jang, Y. O., Cho, M. Y., Yun, C. O., Baik, S. K., Park, K. S., Cha, S. K., … Kwon, S. O. (2016). Effect of function-enhanced mesenchymal stem cells infected with decorin-expressing adenovirus on hepatic fibrosis. Stem Cells Translational Medicine, 5(9), 1247-1256. https://doi.org/10.5966/sctm.2015-0323
Kamimura, M., Matsumoto, K., Koshiba-Takeuchi, K., & Ogura, T. (2004). Vertebrate crossveinless 2 is secreted and acts as an extracellular modulator of the BMP signaling cascade. Developmental Dynamics, 230(3), 434-445. https://doi.org/10.1002/dvdy.20069
Kanda, H., Tateya, S., Tamori, Y., Kotani, K., Hiasa, K., Kitazawa, R., … Kasuga, M. (2006). MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. Journal of Clinical Investigation, 116(6), 1494-1505. https://doi.org/10.1172/JCI26498
Kitagawa, T., Yamamoto, H., Hattori, T., Sentani, K., Takahashi, S., Senoo, A., … Kihara, Y. (2018). Tumor necrosis factor-alpha gene expression in epicardial adipose tissue is related to coronary atherosclerosis assessed by computed tomography. Journal of Atherosclerosis and Thrombosis, 25(3), 269-280. https://doi.org/10.5551/jat.41178
Kwon, H., & Pessin, J. E. (2013). Adipokines mediate inflammation and insulin resistance. Frontiers in Endocrinology, 4, 71. https://doi.org/10.3389/fendo.2013.00071
Lazaros, G., Antonopoulos, A., Antoniades, C., & Tousoulis, D. (2018). The role of epicardial fat in pericardial diseases. Current Cardiology Reports, 20(6), 40. https://doi.org/10.1007/s11886-018-0986-7
Liekens, S., Schols, D., & Hatse, S. (2010). CXCL12-CXCR4 axis in angiogenesis, metastasis, and stem cell mobilization. Current Pharmaceutical Design, 16(35), 3903-3920.
Lin, G., Garcia, M., Ning, H., Banie, L., Guo, Y. L., Lue, T. F., & Lin, C. S. (2008). Defining stem and progenitor cells within adipose tissue. Stem Cells and Development, 17(6), 1053-1063. https://doi.org/10.1089/scd.2008.0117
Liu, X., Duan, B., Cheng, Z., Jia, X., Mao, L., Fu, H., … Kong, D. (2011). SDF-1/CXCR4 axis modulates bone marrow mesenchymal stem cell apoptosis, migration, and cytokine secretion. Protein & Cell, 2(10), 845-854. https://doi.org/10.1007/s13238-011-1097-z
Mathew, B., Francis, L., Kayalar, A., & Cone, J. (2008). Obesity: Effects on cardiovascular disease and its diagnosis. Journal of the American Board of Family Medicine: JABFM, 21(6), 562-568. https://doi.org/10.3122/jabfm.2008.06.080080
McGarvey, A. C., Rybtsov, S., Souilhol, C., Tamagno, S., Rice, R., Hills, D., … Medvinsky, A. (2017). A molecular roadmap of the AGM region reveals BMPER as a novel regulator of HSC maturation. Journal of Experimental Medicine, 214(12), 3731-3751. https://doi.org/10.1084/jem.20162012
Mega, J. L., Stitziel, N. O., Smith, J. G., Chasman, D. I., Caulfield, M., Devlin, J. J., … Sabatine, M. S. (2015). Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: An analysis of primary and secondary prevention trials. Lancet, 385(9984), 2264-2271. https://doi.org/10.1016/S0140-6736(14)61730-X
Miller, R. S., Becker, K. G., Prabhu, V., & Cooke, D. W. (2008). Adipocyte gene expression is altered in formerly obese mice and as a function of diet composition. Journal of Nutrition, 138(6), 1033-1038. https://doi.org/10.1093/jn/138.6.1033
Moraes, R. C., Blondet, A., Birkenkamp-Demtroeder, K., Tirard, J., Orntoft, T. F., Gertler, A., … Begeot, M. (2003). Study of the alteration of gene expression in adipose tissue of diet-induced obese mice by microarray and reverse transcription-polymerase chain reaction analyses. Endocrinology, 144(11), 4773-4782. https://doi.org/10.1210/en.2003-0456
Moreno-Miralles, I., Schisler, J. C., & Patterson, C. (2009). New insights into bone morphogenetic protein signaling: Focus on angiogenesis. Current Opinions in Hematology, 16(3), 195-201. https://doi.org/10.1097/MOH.0b013e32832a07d6
Moser, M., Binder, O., Wu, Y., Aitsebaomo, J., Ren, R., Bode, C., … Patterson, C. (2003). BMPER, a novel endothelial cell precursor-derived protein, antagonizes bone morphogenetic protein signaling and endothelial cell differentiation. Molecular and Cellular Biology, 23(16), 5664-5679.
Murphy, M., Loudon, R., Kobayashi, M., & Trinchieri, G. (1986). Gamma interferon and lymphotoxin, released by activated T cells, synergize to inhibit granulocyte/monocyte colony formation. Journal of Experimental Medicine, 164(1), 263-279. https://doi.org/10.1084/jem.164.1.263
Nakamura, K., Fuster, J. J., & Walsh, K. (2014). Adipokines: A link between obesity and cardiovascular disease. Journal of Cardiology, 63(4), 250-259. https://doi.org/10.1016/j.jjcc.2013.11.006
Perez, L. M., Bernal, A., de Lucas, B., San Martin, N., Mastrangelo, A., Garcia, A., … Galvez, B. G. (2015). Altered metabolic and stemness capacity of adipose tissue-derived stem cells from obese mouse and human. PLoS One, 10(4), e0123397. https://doi.org/10.1371/journal.pone.0123397
Perez, L. M., Bernal, A., San Martin, N., & Galvez, B. G. (2013). Obese-derived ASCs show impaired migration and angiogenesis properties. Archives of Physiology and Biochemistry, 119(5), 195-201. https://doi.org/10.3109/13813455.2013.784339
Perez, L. M., Bernal, A., San Martin, N., Lorenzo, M., Fernandez-Veledo, S., & Galvez, B. G. (2013). Metabolic rescue of obese adipose-derived stem cells by Lin28/Let7 pathway. Diabetes, 62(7), 2368-2379. https://doi.org/10.2337/db12-1220
Perez, L. M., Suarez, J., Bernal, A., de Lucas, B., San Martin, N., & Galvez, B. G. (2016). Obesity-driven alterations in adipose-derived stem cells are partially restored by weight loss. Obesity (Silver Spring), 24(3), 661-669. https://doi.org/10.1002/oby.21405
Pi, X., Lockyer, P., Dyer, L. A., Schisler, J. C., Russell, B., Carey, S., … Patterson, C. (2012). Bmper inhibits endothelial expression of inflammatory adhesion molecules and protects against atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(9), 2214-2222. https://doi.org/10.1161/ATVBAHA.112.252015
Poirier, P., Giles, T. D., Bray, G. A., Hong, Y., Stern, J. S., Pi-Sunyer, F. X., … Metabolism. (2006). Obesity and cardiovascular disease: Pathophysiology, evaluation, and effect of weight loss: An update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation, 113(6), 898-918. https://doi.org/10.1161/CIRCULATIONAHA.106.171016
Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139-140. https://doi.org/10.1093/bioinformatics/btp616
Rodeheffer, M. S., Birsoy, K., & Friedman, J. M. (2008). Identification of white adipocyte progenitor cells in vivo. Cell, 135(2), 240-249. https://doi.org/10.1016/j.cell.2008.09.036
Roldan, M., Macias-Gonzalez, M., Garcia, R., Tinahones, F. J., & Martin, M. (2011). Obesity short-circuits stemness gene network in human adipose multipotent stem cells. FASEB Journal, 25(12), 4111-4126. https://doi.org/10.1096/fj.10-171439
Salazar, J., Luzardo, E., Mejias, J. C., Rojas, J., Ferreira, A., Rivas-Rios, J. R., & Bermudez, V. (2016). Epicardial fat: Physiological, pathological, and therapeutic implications. Cardiology Research and Practice, 2016, https://doi.org/10.1155/2016/1291537
Schmidt, M. O., Garman, K. A., Lee, Y. G., Zuo, C., Beck, P. J., Tan, M., … Wellstein, A. (2018). The role of fibroblast growth factor-binding protein 1 in skin carcinogenesis and inflammation. Journal of Investigative Dermatology, 138(1), 179-188. https://doi.org/10.1016/j.jid.2017.07.847
Sowers, J. R. (2003). Obesity as a cardiovascular risk factor. American Journal of Medicine, 115(Suppl 8A), 37S-41S.
Vermes, I., Haanen, C., Steffens-Nakken, H., & Reutelingsperger, C. (1995). A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. Journal of Immunological Methods, 184(1), 39-51.
Wajchenberg, B. L. (2000). Subcutaneous and visceral adipose tissue: Their relation to the metabolic syndrome. Endocrine Reviews, 21(6), 697-738. https://doi.org/10.1210/edrv.21.6.0415
Ward, M. R., Jeremias, A., Hibi, K., Herity, N. A., Lo, S. T., Filardo, S. D., … Yeung, A. C. (2001). The influence of plaque orientation (pericardial or myocardial) on coronary arterial remodeling. Atherosclerosis, 154(1), 179-183.
Wheeler, G. L., Shi, R., Beck, S. R., Langefeld, C. D., Lenchik, L., Wagenknecht, L. E., … Carr, J. J. (2005). Pericardial and visceral adipose tissues measured volumetrically with computed tomography are highly associated in type 2 diabetic families. Investigative Radiology, 40(2), 97-101.
Yerramasu, A., Dey, D., Venuraju, S., Anand, D. V., Atwal, S., Corder, R., … Lahiri, A. (2012). Increased volume of epicardial fat is an independent risk factor for accelerated progression of sub-clinical coronary atherosclerosis. Atherosclerosis, 220(1), 223-230. https://doi.org/10.1016/j.atherosclerosis.2011.09.041