EEG source-space synchrostate transitions and Markov modeling in the math-gifted brain during a long-chain reasoning task.
EEG source-space synchrostate
Markov chain modeling
agglomerative hierarchical clustering
logical reasoning
math-gifted adolescents
Journal
Human brain mapping
ISSN: 1097-0193
Titre abrégé: Hum Brain Mapp
Pays: United States
ID NLM: 9419065
Informations de publication
Date de publication:
09 2020
09 2020
Historique:
received:
03
06
2019
revised:
06
04
2020
accepted:
26
04
2020
pubmed:
30
5
2020
medline:
15
12
2021
entrez:
30
5
2020
Statut:
ppublish
Résumé
To reveal transition dynamics of global neuronal networks of math-gifted adolescents in handling long-chain reasoning, this study explores momentary phase-synchronized patterns, that is, electroencephalogram (EEG) synchrostates, of intracerebral sources sustained in successive 50 ms time windows during a reasoning task and non-task idle process. Through agglomerative hierarchical clustering for functional connectivity graphs and nested iterative cosine similarity tests, this study identifies seven general and one reasoning-specific prototypical functional connectivity patterns from all synchrostates. Markov modeling is performed for the time-sequential synchrostates of each trial to characterize the interstate transitions. The analysis reveals that default mode network, central executive network (CEN), dorsal attention network, cingulo-opercular network, left/right ventral frontoparietal network, and ventral visual network aperiodically recur over non-task or reasoning process, exhibiting high predictability in interactively reachable transitions. Compared to non-gifted subjects, math-gifted adolescents show higher fractional occupancy and mean duration in CEN and reasoning-triggered transient right frontotemporal network (rFTN) in the time course of the reasoning process. Statistical modeling of Markov chains reveals that there are more self-loops in CEN and rFTN of the math-gifted brain, suggesting robust state durability in temporally maintaining the topological structures. Besides, math-gifted subjects show higher probabilities in switching from the other types of synchrostates to CEN and rFTN, which represents more adaptive reconfiguration of connectivity pattern in the large-scale cortical network for focused task-related information processing, which underlies superior executive functions in controlling goal-directed persistence and high predictability of implementing imagination and creative thinking during long-chain reasoning.
Identifiants
pubmed: 32469458
doi: 10.1002/hbm.25035
pmc: PMC7416043
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3620-3636Subventions
Organisme : China Scholarship Council Fund
ID : 201808340011
Organisme : Fundamental Research Funds for the Central Universities
ID : CDLS-2018-04
Organisme : National Natural Science Foundation of China
ID : 31600862
Organisme : National Natural Science Foundation of China
ID : 31900710
Organisme : National Natural Science Foundation of China
ID : 61773114
Organisme : Scientific Research Innovation Project of Bengbu Medical College
ID : BYKC201905
Organisme : Support Program of Excellent Young Talents in Universities of Anhui Province
ID : gxyqZD2017064
Informations de copyright
© 2020 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.
Références
Hum Brain Mapp. 2016 May;37(5):1893-902
pubmed: 26917433
Neuroscience. 2015 Mar 19;289:334-48
pubmed: 25595993
Appl Neuropsychol Child. 2017 Jan-Mar;6(1):79-94
pubmed: 27049546
Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12569-74
pubmed: 18723676
Brain Struct Funct. 2019 Sep;224(7):2373-2383
pubmed: 31250156
Comput Biol Med. 2011 Dec;41(12):1110-7
pubmed: 21794851
Conf Proc IEEE Eng Med Biol Soc. 2013;2013:2539-42
pubmed: 24110244
Neuroscientist. 2014 Apr;20(2):150-9
pubmed: 23835449
Biomed Eng Online. 2010 Sep 06;9:45
pubmed: 20819204
Cereb Cortex. 2015 Sep;25(9):2763-73
pubmed: 24770711
Hum Brain Mapp. 2012 Jun;33(6):1393-406
pubmed: 21557387
J Comp Neurol. 2005 Dec 5;493(1):147-53
pubmed: 16254989
PLoS One. 2007 Oct 17;2(10):e1049
pubmed: 17940613
Trends Cogn Sci. 2005 Oct;9(10):474-80
pubmed: 16150631
Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):18179-84
pubmed: 20921381
Elife. 2014 Mar 25;3:e01867
pubmed: 24668169
Proc Natl Acad Sci U S A. 2011 May 3;108(18):7641-6
pubmed: 21502525
Front Hum Neurosci. 2014 Jun 11;8:430
pubmed: 24966829
Cogn Neurodyn. 2015 Aug;9(4):371-87
pubmed: 26157511
Comput Intell Neurosci. 2011;2011:879716
pubmed: 21584256
Front Neurosci. 2014 Jun 11;8:141
pubmed: 25018690
Neurosci Biobehav Rev. 2010 Jun;34(7):981-92
pubmed: 19744515
Neuroimage. 2011 Apr 15;55(4):1548-65
pubmed: 21276857
Neuroimage. 2011 Jul 1;57(1):281-292
pubmed: 21463696
Trends Cogn Sci. 2012 Dec;16(12):584-92
pubmed: 23142417
Brain Topogr. 2013 Jul;26(3):397-409
pubmed: 23443252
Trends Cogn Sci. 2010 Jun;14(6):277-90
pubmed: 20493761
IEEE Rev Biomed Eng. 2012;5:60-73
pubmed: 23231989
Front Neurosci. 2019 Jun 11;13:542
pubmed: 31244592
Neuron. 2013 Oct 2;80(1):35-50
pubmed: 24094101
Nat Rev Neurosci. 2009 Mar;10(3):186-98
pubmed: 19190637
Neurosci Biobehav Rev. 2016 Oct;69:357-80
pubmed: 27531234
Neurosci Biobehav Rev. 2009 Mar;33(3):279-96
pubmed: 18824195
Front Neuroinform. 2017 Apr 26;11:28
pubmed: 28491032
Science. 1969 Feb 28;163(3870):895-902
pubmed: 5763873
Dev Cogn Neurosci. 2015 Apr;12:165-74
pubmed: 25797238
Hum Brain Mapp. 2014 Jun;35(6):2619-31
pubmed: 24038774
J Comput Neurosci. 2013 Jun;34(3):411-32
pubmed: 23104010
PLoS Comput Biol. 2009 Mar;5(3):e1000314
pubmed: 19300473
Hum Brain Mapp. 2020 Sep;41(13):3620-3636
pubmed: 32469458
Behav Brain Sci. 2007 Apr;30(2):135-54; discussion 154-87
pubmed: 17655784
Cereb Cortex. 2008 Feb;18(2):386-96
pubmed: 17556771
J Neural Eng. 2019 Apr;16(2):026033
pubmed: 30673644
Neuroimage. 2013 Feb 1;66:311-7
pubmed: 23142654
Cogn Neurosci. 2010 Dec;1(4):277-88
pubmed: 24168381
Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19518-23
pubmed: 17159150
Neuroimage. 2016 Mar;128:264-272
pubmed: 26801604
IEEE Trans Biomed Eng. 2017 Jan;64(1):225-237
pubmed: 27093314
Hum Brain Mapp. 1999;8(4):194-208
pubmed: 10619414
Front Psychol. 2017 Oct 25;8:1646
pubmed: 29118725
Neuroimage. 2015 Jul 1;114:398-413
pubmed: 25828884
Trends Cogn Sci. 2013 Dec;17(12):683-96
pubmed: 24231140
Neuropsychologia. 2001;39(9):901-9
pubmed: 11516443
Neuroimage. 2018 Oct 15;180(Pt B):577-593
pubmed: 29196270
Cereb Cortex. 2018 Jan 1;28(1):103-115
pubmed: 29253252
Am Psychol. 2000 Jan;55(1):159-69
pubmed: 11392860
Cereb Cortex. 2014 Mar;24(3):663-76
pubmed: 23146964
Cereb Cortex. 2003 Dec;13(12):1369-74
pubmed: 14615302
Neuroimage. 2015 Jan 1;104:199-208
pubmed: 25451473
J Neurosci Methods. 2018 Sep 1;307:138-148
pubmed: 29936071
J Clin Psychol. 1988 Sep;44(5):630-73
pubmed: 2461390
J Neurosci Methods. 2004 Mar 15;134(1):9-21
pubmed: 15102499