Vav1 is Essential for HIF-1α Activation via a Lysosomal VEGFR1-Mediated Degradation Mechanism in Endothelial Cells.
HIF-1α
VEGFR
Vav1
endothelial cell
hypoxia
protein degradation
Journal
Cancers
ISSN: 2072-6694
Titre abrégé: Cancers (Basel)
Pays: Switzerland
ID NLM: 101526829
Informations de publication
Date de publication:
27 May 2020
27 May 2020
Historique:
received:
23
04
2020
revised:
24
05
2020
accepted:
25
05
2020
entrez:
31
5
2020
pubmed:
31
5
2020
medline:
31
5
2020
Statut:
epublish
Résumé
The vascular response to hypoxia and ischemia is essential for maintaining homeostasis during stressful conditions and is particularly critical for vital organs such as the heart. Hypoxia-inducible factor-1 (HIF-1) is a central regulator of the response to hypoxia by activating transcription of numerous target genes, including vascular endothelial growth factor (VEGF). Here we identify the guanine nucleotide exchange factor (GEF) Vav1, a regulator of the small Rho-GTPase and cell signaling in endothelial cells, as a key vascular regulator of hypoxia. We show that Vav1 is present in the vascular endothelium and is essential for HIF-1 activation under hypoxia. So, we hypothesized that Vav1 could be a key regulator of HIF-1 signaling. In our findings, Vav1 regulates HIF-1α stabilization through the p38/Siah2/PHD3 pathway. In normoxia, Vav1 binds to vascular endothelial growth factor receptor 1 (VEGFR1), which directs Vav1 to lysosomes for degradation. In contrast, hypoxia upregulates Vav1 protein levels by inhibiting lysosomal degradation, which is analogous to HIF-1α regulation by hypoxia: both proteins are constitutively produced and degraded in normoxia allowing for a rapid response when stress occurs. Consequently, hypoxia rapidly stabilizes Vav1, which is required for HIF-1α accumulation. This shows that Vav1 is the key mediator controlling the stabilization of HIF1α in hypoxic conditions. With this finding, we report a novel pathway to stabilize HIF-1, which shows a possible reason why clinical trials targeting HIF-1 has not been effective. Targeting Vav1 can be the new approach to overcome hypoxic tumors.
Identifiants
pubmed: 32471123
pii: cancers12061374
doi: 10.3390/cancers12061374
pmc: PMC7352305
pii:
doi:
Types de publication
Journal Article
Langues
eng
Références
Nat Rev Mol Cell Biol. 2005 Jan;6(1):79-87
pubmed: 15688069
J Biol Chem. 2006 Nov 17;281(46):35316-26
pubmed: 17003045
Mol Cell Biol. 2005 Jun;25(12):4853-62
pubmed: 15923604
Nat Med. 2003 Jun;9(6):669-76
pubmed: 12778165
Nature. 1995 Mar 30;374(6521):470-3
pubmed: 7700359
Genesis. 2002 Dec;34(4):251-6
pubmed: 12434335
Dev Cell. 2013 Mar 25;24(6):573-85
pubmed: 23537630
Nature. 2006 May 25;441(7092):437-43
pubmed: 16724055
J Biochem. 2013 Jan;153(1):13-9
pubmed: 23172303
Mol Biotechnol. 2013 Nov;55(3):217-26
pubmed: 23709336
Nat Rev Immunol. 2002 Jul;2(7):476-86
pubmed: 12094222
J Cell Mol Med. 2010 Mar;14(3):528-52
pubmed: 19840194
Cancers (Basel). 2019 Oct 25;11(11):
pubmed: 31717697
Mol Cell Biol. 1994 Apr;14(4):2777-85
pubmed: 7511210
Immunol Rev. 2003 Apr;192:42-52
pubmed: 12670394
Immunity. 1997 Oct;7(4):451-60
pubmed: 9354466
Mol Cancer Res. 2009 Apr;7(4):443-51
pubmed: 19372575
J Biol Chem. 1981 Apr 25;256(8):3858-64
pubmed: 7217060
Am J Physiol Lung Cell Mol Physiol. 2002 Jun;282(6):L1324-9
pubmed: 12003789
FEBS Lett. 2018 Jul;592(13):2199-2212
pubmed: 29790151
Nature. 1995 Mar 30;374(6521):474-7
pubmed: 7700360
Mol Cell Biol. 2000 Mar;20(5):1461-77
pubmed: 10669724
Front Oncol. 2019 Mar 20;9:171
pubmed: 30949450
J Biol Chem. 2000 Jun 16;275(24):18160-71
pubmed: 10849438
Proc Natl Acad Sci U S A. 1977 Jan;74(1):54-8
pubmed: 264694
Cell. 1996 Jan 26;84(2):277-87
pubmed: 8565073
Cancer Cell. 2004 Nov;6(5):485-95
pubmed: 15542432
Cell. 2007 Aug 24;130(4):691-703
pubmed: 17719546