Engineered anti-inflammatory peptides inspired by mapping an evasin-chemokine interaction.
C–C motif chemokine ligand (CCL)
chemokine
chemotaxis
evasin
host–pathogen interaction
hydrogen exchange mass spectrometry
immune response
inflammation
innate immunity
mass spectrometry
peptide interaction
peptides
protein structure
protein–protein interaction
tick
Journal
The Journal of biological chemistry
ISSN: 1083-351X
Titre abrégé: J Biol Chem
Pays: United States
ID NLM: 2985121R
Informations de publication
Date de publication:
07 08 2020
07 08 2020
Historique:
received:
28
04
2020
revised:
23
05
2020
pubmed:
31
5
2020
medline:
20
2
2021
entrez:
31
5
2020
Statut:
ppublish
Résumé
Chemokines mediate leukocyte migration and homeostasis and are key targets in inflammatory diseases including atherosclerosis, cytokine storm, and chronic autoimmune disease. Chemokine redundancy and ensuing network robustness has frustrated therapeutic development. Salivary evasins from ticks bind multiple chemokines to overcome redundancy and are effective in several preclinical disease models. Their clinical development has not progressed because of concerns regarding potential immunogenicity, parenteral delivery, and cost. Peptides mimicking protein activity can overcome the perceived limitations of therapeutic proteins. Here we show that peptides possessing multiple chemokine-binding and anti-inflammatory activities can be developed from the chemokine-binding site of an evasin. We used hydrogen-deuterium exchange MS to map the binding interface of the evasin P672 that physically interacts with C-C motif chemokine ligand (CCL) 8 and synthesized a 16-mer peptide (BK1.1) based on this interface region in evasin P672. Fluorescent polarization and native MS approaches showed that BK1.1 binds CCL8, CCL7, and CCL18 and disrupts CCL8 homodimerization. We show that a BK1.1 derivative, BK1.3, has substantially improved ability to disrupt P672 binding to CCL8, CCL2, and CCL3 in an AlphaScreen assay. Using isothermal titration calorimetry, we show that BK1.3 directly binds CCL8. BK1.3 also has substantially improved ability to inhibit CCL8, CCL7, CCL2, and CCL3 chemotactic function
Identifiants
pubmed: 32471866
pii: S0021-9258(17)49195-2
doi: 10.1074/jbc.RA120.014103
pmc: PMC7415964
doi:
Substances chimiques
Anti-Inflammatory Agents
0
CCL8 protein, human
0
Chemokine CCL8
0
Peptides
0
Receptors, Chemokine
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
10926-10939Subventions
Organisme : British Heart Foundation
ID : PG/07/045/22690
Pays : United Kingdom
Organisme : British Heart Foundation
ID : RG/18/1/33351
Pays : United Kingdom
Organisme : British Heart Foundation
ID : RE/13/1/30181
Pays : United Kingdom
Organisme : British Heart Foundation
ID : RG/18/1/33351
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/N020413/1
Pays : United Kingdom
Organisme : British Heart Foundation
ID : CH/09/003/26631
Pays : United Kingdom
Organisme : British Heart Foundation
ID : PG/16/100/32632
Pays : United Kingdom
Informations de copyright
© 2020 Darlot et al.
Déclaration de conflit d'intérêts
Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.
Références
J Biol Chem. 2017 Sep 22;292(38):15670-15680
pubmed: 28778927
Br J Pharmacol. 2014 Mar;171(5):1167-79
pubmed: 24116930
Arterioscler Thromb Vasc Biol. 2014 Apr;34(4):742-50
pubmed: 24436368
Virus Res. 2015 Nov 2;209:67-75
pubmed: 25791735
Semin Immunol. 2018 Apr;36:28-30
pubmed: 29273304
PLoS One. 2016 Dec 9;11(12):e0168007
pubmed: 27936239
Blood. 2009 Feb 26;113(9):1938-47
pubmed: 19064722
Microbiol Mol Biol Rev. 2012 Mar;76(1):16-32
pubmed: 22390970
Trends Biotechnol. 2009 Nov;27(11):628-35
pubmed: 19766335
J Immunol. 2001 Apr 15;166(8):5176-82
pubmed: 11290801
Proteins. 2007 Sep 1;68(4):803-12
pubmed: 17546660
J Biol Chem. 2001 Nov 16;276(46):43270-6
pubmed: 11551937
Analyst. 2017 Aug 7;142(16):2874-2886
pubmed: 28702519
Nucleic Acids Res. 2016 Jan 4;44(D1):D447-56
pubmed: 26527722
Nat Rev Drug Discov. 2009 Jan;8(1):23-33
pubmed: 19079127
Chem Soc Rev. 2011 Mar;40(3):1224-34
pubmed: 21173980
Prog Biophys Mol Biol. 2014 Nov-Dec;116(2-3):194-202
pubmed: 24878423
Structure. 1999 Feb 15;7(2):157-68
pubmed: 10368283
Nat Commun. 2017 Apr 06;8:14773
pubmed: 28382930
Immunity. 2018 Nov 20;49(5):801-818
pubmed: 30462997
Phys Chem Chem Phys. 2014 May 7;16(17):8036-43
pubmed: 24647967
Anal Bioanal Chem. 2010 Jun;397(3):967-72
pubmed: 20195578
J Biol Chem. 2019 Jul 19;294(29):11199-11212
pubmed: 31167786
Exp Cell Res. 2011 Mar 10;317(5):602-12
pubmed: 21376173
Int J Cancer. 1980 Aug;26(2):171-6
pubmed: 6970727
Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):9008-13
pubmed: 11470923
Nature. 1999 Oct 21;401(6755):811-5
pubmed: 10548109
Curr Top Med Chem. 2007;7(10):999-1005
pubmed: 17508933
Nucleic Acids Res. 2018 Jan 4;46(D1):D1091-D1106
pubmed: 29149325
J Struct Biol. 2011 Aug;175(2):209-15
pubmed: 21571074
J Mol Biol. 1991 Mar 20;218(2):397-412
pubmed: 2010917
Nat Rev Rheumatol. 2016 Jan;12(1):5-13
pubmed: 26607389
Curr Opin Pharmacol. 2016 Oct;30:27-37
pubmed: 27459124
Cell. 2013 Jul 3;154(1):197-212
pubmed: 23827683
Bioorg Med Chem. 2018 Jun 1;26(10):2700-2707
pubmed: 28720325
J Immunol. 2004 Apr 15;172(8):4977-86
pubmed: 15067079
Nat Methods. 2016 Apr;13(4):333-6
pubmed: 26901650
Trends Biochem Sci. 2020 Feb;45(2):108-122
pubmed: 31679840
Sci Transl Med. 2017 Apr 5;9(384):
pubmed: 28381538
J Biol Chem. 2018 Apr 20;293(16):6134-6146
pubmed: 29487134
Biochemistry. 2000 Nov 21;39(46):14075-81
pubmed: 11087354
Nature. 1975 Aug 28;256(5520):705-8
pubmed: 1153006
PLoS One. 2009 Dec 30;4(12):e8514
pubmed: 20041127
Peptides. 2009 Jul;30(7):1296-305
pubmed: 19540428
Curr Protoc Pharmacol. 2016 Mar 18;72:5.6.1-5.6.9
pubmed: 26995549
Immunity. 2012 May 25;36(5):705-16
pubmed: 22633458
Sci Rep. 2017 Jun 27;7(1):4267
pubmed: 28655871
Lancet. 2020 Feb 15;395(10223):497-506
pubmed: 31986264
Methods Mol Biol. 2015;1278:183-204
pubmed: 25859950
Biochim Biophys Acta. 2015 Oct;1850(10):1973-82
pubmed: 25542300
Front Immunol. 2016 Jun 07;7:208
pubmed: 27375615
Chem Sci. 2018 Apr 23;9(20):4569-4578
pubmed: 29899950
PLoS One. 2019 May 9;14(5):e0216405
pubmed: 31071151
Lancet. 2020 Mar 28;395(10229):1033-1034
pubmed: 32192578
Science. 2013 Jan 11;339(6116):166-72
pubmed: 23307734
Immunol Lett. 2013 Jan;149(1-2):19-29
pubmed: 23183094
Sci Rep. 2018 Apr 20;8(1):6333
pubmed: 29679010
Expert Rev Clin Immunol. 2018 Jun;14(6):513-523
pubmed: 29683362