Dual role of Ca
Animals
Anoctamin-1
/ metabolism
Apoptosis
/ drug effects
Cell Line
Dextran Sulfate
Electric Impedance
Epithelial Cells
/ drug effects
Extracellular Signal-Regulated MAP Kinases
/ metabolism
Intestines
/ pathology
Lipopolysaccharides
/ toxicity
Male
Mice, Inbred C57BL
RNA, Small Interfering
/ metabolism
Rats
Tight Junctions
/ drug effects
Trinitrobenzenesulfonic Acid
Journal
Cell death & disease
ISSN: 2041-4889
Titre abrégé: Cell Death Dis
Pays: England
ID NLM: 101524092
Informations de publication
Date de publication:
29 05 2020
29 05 2020
Historique:
received:
01
02
2020
accepted:
13
05
2020
revised:
12
05
2020
entrez:
31
5
2020
pubmed:
31
5
2020
medline:
13
3
2021
Statut:
epublish
Résumé
Dysfunction of intestinal epithelial Cl
Identifiants
pubmed: 32472021
doi: 10.1038/s41419-020-2614-x
pii: 10.1038/s41419-020-2614-x
pmc: PMC7260209
doi:
Substances chimiques
Anoctamin-1
0
Lipopolysaccharides
0
RNA, Small Interfering
0
Trinitrobenzenesulfonic Acid
8T3HQG2ZC4
Dextran Sulfate
9042-14-2
Extracellular Signal-Regulated MAP Kinases
EC 2.7.11.24
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
404Références
Ahluwalia, B., Magnusson, M. K. & Ohman, L. Mucosal immune system of the gastrointestinal tract: maintaining balance between the good and the bad. Scand. J. Gastroenterol. 52, 1185–1193 (2017).
pubmed: 28697651
doi: 10.1080/00365521.2017.1349173
Tarasiuk, A. & Fichna, J. Gut microbiota: what is its place in pharmacology? Expert Rev. Clin. Pharm. 12, 921–930 (2019).
doi: 10.1080/17512433.2019.1670058
Goto, Y. et al. Epithelial cells as a transmitter of signals from commensal bacteria and host immune cells. Front. Immunol. 10, 2057 (2019).
pubmed: 31555282
pmcid: 6724641
doi: 10.3389/fimmu.2019.02057
Clavel, T. & Haller, D. Bacteria- and host-derived mechanisms to control intestinal epithelial cell homeostasis: implications for chronic inflammation. Inflamm. Bowel Dis. 13, 1153–1164 (2007).
pubmed: 17476679
doi: 10.1002/ibd.20174
Mankertz, J. & Schulzke, J. D. Altered permeability in inflammatory bowel disease: pathophysiology and clinical implications. Curr. Opin. Gastroenterol. 23, 379–383 (2007).
pubmed: 17545772
doi: 10.1097/MOG.0b013e32816aa392
Porras, M. et al. Correlation between cyclical epithelial barrier dysfunction and bacterial translocation in the relapses of intestinal inflammation. Inflamm. Bowel Dis. 12, 843–852 (2006).
pubmed: 16954803
doi: 10.1097/01.mib.0000231571.88806.62
Dillon, S. M. et al. Low abundance of colonic butyrate-producing bacteria in HIV infection is associated with microbial translocation and immune activation. Aids 31, 511–521 (2017).
pubmed: 28002063
pmcid: 5263163
doi: 10.1097/QAD.0000000000001366
Amar, J. et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol. Med. 3, 559–572 (2011).
pubmed: 21735552
pmcid: 3265717
doi: 10.1002/emmm.201100159
Lee, Y. K., Menezes, J. S., Umesaki, Y. & Mazmanian, S. K. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 108(Suppl 1), 4615–4622 (2011).
pubmed: 20660719
doi: 10.1073/pnas.1000082107
Haase, S. et al. Impacts of microbiome metabolites on immune regulation and autoimmunity. Immunology 154, 230–238 (2018).
pubmed: 29637999
pmcid: 5980218
doi: 10.1111/imm.12933
Hansson, G. C. & Johansson, M. E. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Gut Microbes 1, 51–54 (2010).
pubmed: 21327117
pmcid: 3035142
doi: 10.4161/gmic.1.1.10470
Cobo, E. R. et al. MUC2 Mucin and butyrate contribute to the synthesis of the antimicrobial peptide cathelicidin in response to entamoeba histolytica- and dextran sodium sulfate-induced colitis. Infect. Immun. 85, e00905–16 (2017).
pubmed: 28069814
pmcid: 5328487
doi: 10.1128/IAI.00905-16
Wang, X. et al. Growth hormone downregulated the excessive apoptosis of ileal intestinal epithelial cells in rats during the early course of acute necrotizing pancreatitis. Pancreas 25, 205–209 (2002).
pubmed: 12142747
doi: 10.1097/00006676-200208000-00016
Al-Sadi, R. et al. Occludin regulates macromolecule flux across the intestinal epithelial tight junction barrier. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G1054–G1064 (2011).
pubmed: 21415414
pmcid: 3119114
doi: 10.1152/ajpgi.00055.2011
Carneiro-Filho, B. A. et al. Intestinal barrier function and secretion in methotrexate-induced rat intestinal mucositis. Dig. Dis. Sci. 49, 65–72 (2004).
pubmed: 14992437
doi: 10.1023/B:DDAS.0000011604.45531.2c
Lee, B., Moon, K. M. & Kim, C. Y. Tight junction in the intestinal epithelium: its association with diseases and regulation by phytochemicals. J. Immunol. Res. 2018, 2645465 (2018).
pubmed: 30648119
pmcid: 6311762
Vaziri, N. D., Zhao, Y. Y. & Pahl, M. V. Altered intestinal microbial flora and impaired epithelial barrier structure and function in CKD: the nature, mechanisms, consequences and potential treatment. Nephrol. Dial. Transpl. 31, 737–746 (2016).
doi: 10.1093/ndt/gfv095
Deng, Y. et al. Magnolol and honokiol attenuate apoptosis of enterotoxigenic Escherichia Coli-induced intestinal epithelium by maintaining secretion and absorption homeostasis and protecting mucosal integrity. Med. Sci. Monit. 24, 3348–3356 (2018).
pubmed: 29782483
pmcid: 5990993
doi: 10.12659/MSM.910350
Zhou, J. et al. Keratinocyte growth factor down-regulates expression of the sucrase-isomaltase gene in Caco-2 intestinal epithelial cells. J. Biol. Chem. 273, 33367–33373 (1998).
pubmed: 9837912
doi: 10.1074/jbc.273.50.33367
Gitter, A. H., Wullstein, F., Fromm, M. & Schulzke, J. D. Epithelial barrier defects in ulcerative colitis: characterization and quantification by electrophysiological imaging. Gastroenterology 121, 1320–1328 (2001).
pubmed: 11729111
doi: 10.1053/gast.2001.29694
Yang, Y. D. et al. TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455, 1210–1215 (2008).
pubmed: 18724360
doi: 10.1038/nature07313
Mroz, M. S. & Keely, S. J. Epidermal growth factor chronically upregulates Ca(2+)-dependent Cl(-) conductance and TMEM16A expression in intestinal epithelial cells. J. Physiol. 590, 1907–1920 (2012).
pubmed: 22351639
pmcid: 3573312
doi: 10.1113/jphysiol.2011.226126
Catalan, M. A. et al. A fluid secretion pathway unmasked by acinar-specific Tmem16A gene ablation in the adult mouse salivary gland. Proc. Natl Acad. Sci. USA 112, 2263–2268 (2015).
pubmed: 25646474
doi: 10.1073/pnas.1415739112
Wang, H. et al. Cell-specific mechanisms of TMEM16A Ca(2+)-activated chloride channel in cancer. Mol. Cancer 16, 152 (2017).
pubmed: 28893247
pmcid: 5594453
doi: 10.1186/s12943-017-0720-x
Hahn, A. et al. Expression and function of Anoctamin 1/TMEM16A calcium-activated chloride channels in airways of in vivo mouse models for cystic fibrosis research. Pflug. Arch. 470, 1335–1348 (2018).
doi: 10.1007/s00424-018-2160-x
Wang, B., Li, C., Huai, R. & Qu, Z. Overexpression of ANO1/TMEM16A, an arterial Ca2+-activated Cl- channel, contributes to spontaneous hypertension. J. Mol. Cell Cardiol. 82, 22–32 (2015).
pubmed: 25739000
doi: 10.1016/j.yjmcc.2015.02.020
Ousingsawat, J. et al. Rotavirus toxin NSP4 induces diarrhea by activation of TMEM16A and inhibition of Na+ absorption. Pflug. Arch. 461, 579–589 (2011).
doi: 10.1007/s00424-011-0947-0
Benedetto, R., Cabrita, I., Schreiber, R. & Kunzelmann, K. TMEM16A is indispensable for basal mucus secretion in airways and intestine. Faseb J. 33, 4502–4512 (2019).
pubmed: 30586313
doi: 10.1096/fj.201801333RRR
Dutta, A. K. et al. PKCalpha regulates TMEM16A-mediated Cl(-) secretion in human biliary cells. Am. J. Physiol. Gastrointest. Liver Physiol. 310, G34–G42 (2016).
pubmed: 26542395
doi: 10.1152/ajpgi.00146.2015
Vega, G. et al. Corrigendum: normal calcium-activated anion secretion in a mouse selectively lacking TMEM16A in intestinal epithelium. Front. Physiol. 10, 1040 (2019).
pubmed: 31501653
pmcid: 6718868
doi: 10.3389/fphys.2019.01040
Zhang, A. et al. TMEM16A protein attenuates lipopolysaccharide-mediated inflammatory response of human lung epithelial cell line A549. Exp. Lung Res. 40, 237–250 (2014).
pubmed: 24784799
doi: 10.3109/01902148.2014.905655
Li, H. et al. Increased TMEM16A involved in alveolar fluid clearance after lipopolysaccharide stimulation. Inflammation 39, 881–890 (2016).
pubmed: 26899569
doi: 10.1007/s10753-016-0320-8
Yan, S. et al. Inhibition of ANO1/TMEM16A induces apoptosis in human prostate carcinoma cells by activating TNF-α signaling. Cell Death Dis. 9, 703 (2018).
doi: 10.1038/s41419-018-0735-2
Park, J. C. et al. Hispidulin-7-O-neohesperidoside from cirsium japonicum var. ussuriense attenuates the production of inflammatory mediators in LPS-induced raw 264.7 cells and HT-29 cells. Pharmacogn. Mag. 13, 707–711 (2017).
pubmed: 29200737
pmcid: 5701415
doi: 10.4103/0973-1296.204554
Kilkenny, C. et al. Animal research: reporting in vivo experiments-the ARRIVE guidelines. J. Cereb. Blood Flow. Metab. 31, 991–993 (2011).
pubmed: 21206507
pmcid: 3070981
doi: 10.1038/jcbfm.2010.220
Fan, H. et al. Toosendanin alleviates dextran sulfate sodium-induced colitis by inhibiting M1 macrophage polarization and regulating NLRP3 inflammasome and Nrf2/HO-1 signaling. Int. Immunopharmacol. 76, 105909 (2019).
pubmed: 31520988
doi: 10.1016/j.intimp.2019.105909
Xiong, Y. et al. Activation of sirtuin 1 by catalpol-induced down-regulation of microRNA-132 attenuates endoplasmic reticulum stress in colitis. Pharm. Res. 123, 73–82 (2017).
doi: 10.1016/j.phrs.2017.05.030
Hanru, W. et al. Escherichia coli Nissle 1917-derived factors reduce cell death and late apoptosis and increase transepithelial electrical resistance in a model of 5-fluorouracil-induced intestinal epithelial cell damage. Cancer Biol. Ther. 15, 560–569 (2014).
doi: 10.4161/cbt.28159
Caci, E. et al. Upregulation of TMEM16A protein in bronchial epithelial cells by bacterial pyocyanin. PLoS ONE 10, e0131775 (2015).
pubmed: 26121472
pmcid: 4486680
doi: 10.1371/journal.pone.0131775
Kondo, M. et al. Chloride ion transport and overexpression of TMEM16A in a guinea-pig asthma model. Clin. Exp. Allergy 47, 795–804 (2017).
pubmed: 28109183
doi: 10.1111/cea.12887
Huang, F. et al. Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction. Proc. Natl Acad. Sci. USA 109, 16354–16359 (2012).
pubmed: 22988107
doi: 10.1073/pnas.1214596109
Birchenough, G. M. et al. New developments in goblet cell mucus secretion and function. Mucosal Immunol. 8, 712–719 (2015).
pubmed: 25872481
pmcid: 4631840
doi: 10.1038/mi.2015.32
Sandle, G. I., Hayslett, J. P. & Binder, H. J. Effect of glucocorticoids on rectal transport in normal subjects and patients with ulcerative colitis. Gut 27, 309–316 (1986).
pubmed: 3699552
pmcid: 1433405
doi: 10.1136/gut.27.3.309
Benedetto, R. et al. Epithelial chloride transport by CFTR requires TMEM16A. Sci. Rep. 7, 12397 (2017).
pubmed: 28963502
pmcid: 5622110
doi: 10.1038/s41598-017-10910-0
Rottgen, T. S. et al. Dextran sulfate sodium-induced chronic colitis attenuates Ca(2+)-activated Cl(-) secretion in murine colon by downregulating TMEM16A. Am. J. Physiol. Cell Physiol. 315, C10–c20 (2018).
pubmed: 29561662
pmcid: 6087728
doi: 10.1152/ajpcell.00328.2017
Kunzelmann, K. et al. Control of ion transport by Tmem16a expressed in murine intestine. Front. Physiol. 10, 1262 (2019).
pubmed: 31680994
pmcid: 6797858
doi: 10.3389/fphys.2019.01262
Bill, A. et al. Small molecule-facilitated degradation of ANO1 protein: a new targeting approach for anticancer therapeutics. J. Biol. Chem. 289, 11029–11041 (2014).
pubmed: 24599954
pmcid: 4036244
doi: 10.1074/jbc.M114.549188